bakteeri

Virtanen sai bakteerin

Pe, 08/31/2018 - 22:44 Toimitus
Virtasen bakteeri

Tämä on skandaali: A. I. Virtanen jäi aikanaan ilman hänen mukaansa nimettyä bakteeria. Nyt tämä epäkohta korjataan, sillä Helsingin yliopiston maatalous-metsätieteellisen tiedekunnan tutkijat kunnioittavat nobelistiamme nimeämällä löytämänsä bakteerin Acidipropionibacterium virtaneniiksi.

Artturi Ilmari Virtanen (1895–1973) tunnetaan parhaiten maitohappokäymiseen perustuvasta rehun säilömismenetelmästä, josta hän sai kemian Nobelin palkinnon vuonna 1945.

Virtasen propionihappobakteereita koskeva tutkimus on sen sijaan vähemmän tunnettua. Propionihappobakteereihin kuuluu useita merkittäviä lajeja, jotka esimerkiksi valmistavat B12-vitamiinia, ovat mukana aknen synnyssä tai tuottavat propionihappoa teollisuusmittakaavassa.

Propionihappobakteereita onnistuttiin eristämään ja kuvaamaan tieteelle jo 1900-luvun alussa. 1920-luvun alussa A. I. Virtanen tutki suomalaisesta emmentaljuustosta eristämiään propionihappobakteerikantoja, mutta vasta hollantilainen Cornelius Bernadus van Niel loi väitöskirjassaan 1928 propionihappobakteerien systemaattisen luokittelun ja nimistön.

van Niel nimesi bakteerilajeja ensimmäisten propionihappobakteeritutkijoiden kunniaksi. Esimerkiksi B12-vitamiinia tuottava, sveitsiläisjuustoille tyypillinen Propionibacterium freudenreichii sai nimensä Eduard von Freudenreichiltä, myös juustoissa esiintyvä Propionibacterium jensenii puolestaan Sigurd Orla-Jenseniltä ja Acidipropionibacterium thoenii J. Thöniltä.

Virtanen ei kuitenkaan saanut omaa bakteeria, koska hän itsekin uskoi, että hänen eristämänsä kannat kuuluivat jo Thönin mukaan nimettyyn lajiin.

Helsingin yliopistossa on tutkittu erilaisista ympäristöistä eristettyjä propionihappobakteerikantoja ja selvitetty niiden perimän emäsjärjestystä. Suomalaisesta mallastetusta ohrasta eristetyn kannan haaraiset soluketjut ja niiden agar-maljalla kasvaessaan tuottama pigmentti olivat samankaltaisia kuin Virtasen kuvaamilla kannoilla. Kanta myös erosi perimältään riittävästi Acidipropionibacterium thoenii -lajista ja sen tunnetuista sukulaisista muodostaakseen kokonaan uuden lajin.

Tutkijat päättivätkin nimetä lajin Virtasen mukaan.

"Meillä ei tietenkään ole mahdollisuutta tietää varmuudella, onko nyt eristetty uusi laji juuri A. I. Virtasen kuvaama", sanoo Paulina Deptula maatalous-metsätieteellisestä tiedekunnasta. "Päätimme kuitenkin antaa löytämällemme lajille Virtasen uraauurtavan tutkimuksen kunniaksi Acidipropionibacterium virtanenii -nimen,

*

Juttu on Helsingin yliopiston tiedote.

Hyvää lisätietoa A.I.Virtasesta on tässä Valion tekemässä videossa:

Bakteerit syövät Titanicin hylkyä

Ma, 05/14/2018 - 19:13 Toimitus

BBC Earth kertoo kiinnostavassa artikkelissaan metallia syövistä bakteereista, jotka pistävät juuri nyt myös eeppisen Titanicin hylkyä pieniin poskiinsa*. Kenties jo 20 vuoden kuluttua hylky on tuhoutunut.

Titanic lepää nyt Atlantin valtameren pohjassa noin 3800 metrin syvyydessä. Siellä, pimeydessä ja suuressa vedenpaineessa, kaikki tapahtuu hitaasti. Myös ruostuminen.

Niinpä vuonna 1912 uponneesta Titanicista on vielä paljon jäljellä, kuten sille tehdyt sukellukset osoittavat.

Ruostetta ikävämpi tuhoaja on kuitenkin vuonna 1991 löydetty kummallinen metallinsyöjäbakteeri.

Tutkijat kanadalaisesta Halifaxissa sijaitsevasta Dalhousien yliopistosta toivat laboratorioon laivasta jääpuikolta näyttävän kokkareen. Yllättäen siinä oli elämää, mutta tutkijat eivät osanneet tunnistaa sitä täysin. 

Pikakelaus liki 20 vuotta eteenpäin: saman yliopiston tutkija Henrietta Mann ryhmineen määritteli vuonna 2010 syyllisenä olevan bakteerin. Se oli aivan uudenlainen, omituinen syvänmeren bakteeri, joten ei ollut sinänsä yllättävää, ettei sitä osattu aikanaan tunnistaa.

Mannin tutkimusryhmä antoi sille löytöpaikkaa kunnioittaen nimen Halomonas titanicae.

Bakteereista enemmän innostuneet voivat lukea siitä enemmän täältä.

Titanic kuvattuna Corkissa 11. huhtikuuta 1912. Kuvaaja tuntematon, via Cobh Heritage Centre.
Titanic kuvattuna Corkissa 11. huhtikuuta 1912. Kuvaaja tuntematon, via Cobh Heritage Centre.

 

Halomonas -bakteerit elävät hyvin muun muassa hyvin suolaisissa ympäristöissä. Tutkijoiden mukaan Halomonas titanicae selviää vedessä, jonka suolapitoisuus on 0,5 % – 25 % massasta, mutta potreimmin se voi silloin, kun suolapitoisuus on 2 – 8 prosenttia.

Bakteerit kiinnittyvät laivan rautaosiin ja muodostavat niihin juuri jääpuikon kaltaisia muodostelmia. Syynä muotoon on painovoima, joka valuttaa bakteereja hitaasti alaspäin samaan tapaan kuin vesipisarat putoavat alaspäin ja jäätyvät puikon pintaan. Meren pohjassa kaikki vain käy paljon hitaammin.

Titanicin hylyn ympäristön suolapitoisuutta ei tunneta hyvin, joten arvio ajasta, mikä kuluu koko 47 000 -tonnisen laivan murentamiseen, on varsin epävarma. Se saattaa olla vain 14 vuotta, tai yli 30 vuotta.

Joka tapauksessa bakteerit käyttävät hylyssä rautaa hyväkseen, joten vähitellen rauta siirtyy bakteerien elintoimintojen myötä meriveteen.

Laiva tulee siis taatusti kierrätetyksi.

* Varmuuden vuoksi todettakoon, että bakteereilla ei ole poskia. Ilmaisu on kuvainnollinen.

Superuutuus bakteeri-infektioiden hoidoissa: täsmälääkkeet

To, 02/16/2017 - 23:40 Toimitus

Tätä läpimurtoa ei ole tehty lääketieteen laboratoriossa, vaan tietokoneilla: tutkijat ovat tehneet laskennallisella päättelyllä ja tilastomalleilla läpimurron, jonka avulla tulevaisuudessa voidaan kehittää täsmälääkkeitä vakavia infektioita aiheuttavia bakteereita vastaan.

Lähes kaikille antibiooteille vastustuskykyiset bakteerit ovat viimeisen kymmenen vuoden aikana ilmaantuneet eri puolille maailmaa, koska bakteerit siirtyvät maanosasta toiseen ihmisten maailmanlaajuiden jatkuvan liikkumisen seurauksena.

Maailman terveysjärjestö WHO onkin määritellyt antibioottiresistenssin leviämisen maailmanlaajuiseksi uhaksi ihmisen terveydelle.

"Tutkimustyöhömme perustuva uusi menetelmä antaa mahdollisuuden kohdentaa lääkeaine sellaisiin bakteerien perinnöllisiin tekijöihin, että resistenssin kehittymisen ja lajilta toiselle leviämisen mahdollisuus minimoidaan", sanoo tänään julkaistussa tutkimuksessa mukana ollut Helsingin informaatioteknologian tutkimuslaitoksen HIIT:in professori Jukka Corander.

Tilastollinen malli paljastaa evolutiivisia rajoitteita bakteerien perimän muutoksissa

Arvostetussa PloS Genetics -lehdessä juuri julkaistussa tutkimuksessa havainnollistetaan laskennallisen menetelmän tarjoamia mahdollisuuksia lääkkeiden kehitystyölle.

Työssään tutkijat analysoivat suuria määriä pneumokokki- ja streptokokkibakteerien näytteitä ja kehittivät tilastollisen mallin, jonka avulla voidaan paljastaa evolutiivisia rajoitteita luonnollisessa ympäristössä tapahtuville muutoksille bakteerien perimässä.

Pneumokokeilta paljastui tämän myötä useita aiemmin tuntemattomia mutaatioiden yhdysvaikutuksia.

"Yhdistämällä näistä yhdysvaikutuksista saatava tieto systeemibiologiaan ja molekyylilääketieteeseen voitaisiin ottaa tavoitteeksi lääkeaine, joka häiritsisi kyseisten geenien toimintaa ja yhtäaikaisesti johtaisi bakteerien solujen uusiutumisen estymiseen", sanoo Corander.

"Koska yhdysvaikutukset ovat useimmissa tapauksissa vahvasti sidoksissa tietyn bakteerilajin ydinperimään, lääkeaineella ei olisi sivuvaikutuksia muihin bakteereihin.

Corander mukaan koskaan aiemmin ei ole kyetty sovittamaan mutaatioiden välistä evolutiivista vuorovaikutuspainetta kuvaavaa todennäköisyysmallia samanaikaisesti kaikkiin perimässä esiintyviin mutaatioihin."

Malli sisältää lähes sata miljardia tuntematonta tekijää

Tutkijat hyödynsivät työssään useiden vuosien aikana kertynyttä kokemusta päättelyalgoritmeista ja kehittivät lähestymistavan, joka mahdollisti riittävän tarkan analyysin.

Tutkimustulokset antavat Coranderin mukaan mahdollisuuden tarkastella lähitulevaisuudessa kaikkien yleisten infektiotauteja aiheuttavien bakteerien perimän muutoksia laajojen genomiaineistojen pohjalta. Hän näkee, että näin voitaisiin perustutkimuksen avulla luoda pohja täsmälääketieteen sovelluksille ja edesauttaa vakavien infektioiden torjuntaa tulevaisuudessa.

Corander johtaa HIIT:in laskennallisen päättelyn tutkimusohjelmaa ja toimi nyt julkaistun hankkeen vastuullisena tutkijana. Hänen mukaansa laskennallinen haaste on valtava, koska tämänkaltainen malli sisältää lähes sata miljardia tuntematonta tekijää.

Ratkaisun saavuttamiseksi tarvittiin satojatuhansia tunteja prosessoriaikaa Suomen tieteellisen laskennan CSC:n palvelimella. Tärkeinä yhteistyökumppaneina toimivat myös maailman johtavan genomikeskuksen Sanger-instituutin bakteerigenomiikan tutkijat.

Lähdejulkaisu: Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis, PloS Genetics (DOI: 10.1371/journal.pgen.1006508).

Juttu perustuu Helsingin yliopiston tiedotteeseen.

Video: Katso kuinka nopeasti bakteerit alkavat sietää antibiootteja

Oletko joskus ottanut antibioottikuurin "varmuuden vuoksi"? Tai jättänyt turhalta tuntuvan kuurin kesken? Tai oletko ehkä sitä mieltä, että evoluutio on täyttä humpuukia? Silloin kannattaa katsoa tämä video.

Videolla näkyy, kuinka bakteerit kehittävät vastustuskyvyn ensin pienille myrkkymäärille, ja lopulta suurillekin. Hyvin nopeasti, 11 vuorokaudessa. Koska video on varsin lumoavaa katsottavaa, tässä vielä toinenkin! Siinä bakteerit valloittavat levyn 14 vuorokaudessa, hieman eri tavalla.

Koejärjestely on yksinkertainen. Kuvassa on bakteerien kasvatusalusta, kooltaan 60x120 cm. Se on jaettu kapeisiin alueisiin. Laidoilla on pelkkää kasvatusalustana toimivaa ainetta, mutta keskempänä siihen on sekoitettu antibioottia. Keskustaa lähestyttäessä bakteereille myrkyllisen aineen määrä kasvaa joka rajalla kymmenkertaiseksi.

Pöpöt päästetään liikkeelle laidoilta. Ensimmäisellä rajalla ne pysähtyvät kuin seinään. Sitten läpi pääsee pari kehityslinjaa... ja pian myrkyllisimmällekin alueelle porhalletaan käytännössä rajoilla pysähtymättä.

Samoin käy myös ihmiskehoissa, sairaaloissa ja suurissa populaatioissa. Antibioottiresistanssin kehittyminen on sattumanvaraista, mutta sitä edesautetaan liian pienillä ja turhilla altistuksilla.

Videot liittyvät muutama päivä sitten Sciencessä julkaistuun tutkimukseen. Tutkijoiden kehittämällä menetelmällä voidaan helposti perehtyä siihen, kuinka bakteerit kehittävät uusia ominaisuuksia. Evoluutiota silmien edessä.

Miksi botox tappaa?

Pe, 08/26/2016 - 07:32 Toimitus

Suomalaistutkijat pyrkivät selvittämään, miksi ja missä olosuhteissa tämä maaperässä ja vesistöissä elävä Clostridium botulinum -bakteeri tuottaa botoxina tunnettua tappavaa hermomyrkkyä botuliinitoksiinia.

Bakteriologian tutkimus on muutoksessa.

Enää ei oleteta koko tutkittavan bakteerikolonnan koostuvan miljoonista identtisistä ja samalla tavoin käyttäytyvistä bakteerisoluista vaan kasvustojen oletetaan käyttäytyvän ennemminkin monisoluisen ”elimen” tavoin, jossa elinympäristöstä tulevat viestit ohjaavat yksittäisten solujen tai solujoukkojen työnjakoa.

Tämä on lähtöajatus myös Helsingin yliopiston professorin Miia Lindströmin johtamassa Clostridium botulinum –bakteerin (otsikkokuvassa) tutkimuksessa.

"Pyrimme ymmärtämään, miksi bakteerit, tai osa niistä, tuottavat tappavaa hermomyrkkyä, botuliinia ja mikä niitä motivoi", Lindström kertoo Helsingin yliopiston tiedotteessa.  

"Jos ymmärtäisimme syvällisesti, mitä hyötyä hermomyrkyn tuottamisesta bakteerille on, voisimme saada selville, miten bakteerin myrkyntuotantoa voitaisiin säädellä ja hallita."

Botoxia naamaan, mutta ei ruokaan

Vaikka C. botulinum -bakteeri on tunnettu jo pari vuosisataa, se on hermomyrkkytuotantonsa takia edelleen kiinnostava. Bakteerin tuottama botuliini on eräs voimakkaimmista tunnetuista myrkyistä, ja se aiheuttaa jo gramman miljoonasosan määrissä neliraajahalvauksen. Tauti saattaa johtaa myös kuolemaan, jos keuhkojen hengityslihakset halvaantuvat. Toipuminen edellyttää viikkojen tai kuukausien tehohoitoa.

Botuliini on haitallista kaikille eläimille, ei vain ihmiselle.

Nimensä botuliini ja sen aiheuttama myrkytystila, botulismi, on saanut latinan kielen makkaraa tarkoittavasta sanasta botulus, koska myrkky löydettiin ensimmäisen kerran 1700-luvun lopussa pilaantuneista makkaroista. Yhä edelleenkin botulismi vaanii pilaantuneissa ruokatarvikkeissa, sillä C. botulinum -bakteereita, kuten muitakin ns. itiöllisiä bakteereita esiintyy kaikkialla maaperässä ja vesistöissä, joista ne siirtyvät ravintoketjuun.

Sopivissa olosuhteissa – ja hygienian pettäessä – bakteeri pääsee tuottamaan ruokatarvikkeessa myrkkyjä.

Itiölliset bakteerit ovat yllättävän kestäviä, koska niillä on kestävä kuori, joka suojaa niiden perimää ja muita toimintoja. Näin ollen osa niistä pystyy selviämään myös elintarviketeollisuuden prosesseista.

"Botulismi on onneksi äärimmäisen harvinainen mutta kuitenkin tunnettu ruokavälitteisenä ilmiönä, jota vastaan elintarviketeollisuus jatkuvasti kamppailee", Lindström sanoo.

"Monet itiölliset bakteerit viihtyvät sekä hapettomissa että kylmissä olosuhteissa, jolloin osa niistä pystyy tuottamaan toksiineja kasvunsa aikana."

Elintarvikkeita pakataan yhä useammin hapettomiin pakkauksiin, kuten tyhjiöpakkauksiin tai suojakaasuun, sillä "nykyisin elintarvikkeiden käsittelyprosessit ovat kuluttajien vaatimuksesta suhteellisen mietoja", kuten Lindström toteaa.

Botuliinia voi käyttää myös hyväksi. Sen lääketieteellinen hyötykäyttö liittyy myrkyn lihaksia lamaannuttavaan vaikutukseen: sillä voi esimerkiksi hoitaa neurologisista syistä johtuvaa tahatonta lihasten nykimistä, silmien räpsytystä ja erilaisia pakkoliikehdintäoireita.

Ja kyllä: botuliini on kuuluisaa botoxia, jota piikitetään kosmeettisissa tarkoituksissa naamaan. Hyvin pieninä määrinä annettu botox lamaannuttaa kasvojen lihaksia ja tasaa siten ryppyjä. Vaikutus ei kestä pitkään, joten pysyvää vaikutusta ei pistoksilla saa aikaan.

Suomalaiset maailman huippua tällä alalla

Miia Lindströmin C. botulinum -bakteerin tutkimukseen keskittyvä tutkimusryhmä työskentelee Helsingin yliopiston eläinlääketieteellisessä tiedekunnassa Viikin kampuksella.

Ryhmällä on menossa useita hankkeita, joissa tutkitaan elintarviketurvallisuuteen sekä tuotantoeläinten botulismiin keskittyviä kysymyksiä ja tehdään luonnollisesti itiöllisten bakteerien perustutkimusta – perustutkimus on kaikkien käytännön sovellusten pohjalla. 

Rahoitusta Lindström ja tutkimusryhmä on saanut Suomen Akatemialta, maa- ja metsätalousministeriöltä ja EU:lta, ja ryhmä on tai on ollut partnerina viidessä eurooppalaisessa laboratorio- ja tutkimusyhteistyöverkostossa.

Haastavaa C. botulinum -tutkimuksessa on se, että sitä voi tehdä vain erikoislaboratorio-oloissa, koska hermomyrkkyä tuottavien bakteerikasvustojen käsittelyyn vaaditaan turvalaboratorio.

"Meillä on eläinlääketieteellisessä tiedekunnassa erinomainen laboratorio ja vahva työskentelykulttuuri jo yli 25 vuoden ajalta neurotoksisten bakteerien kimpussa", Lindström kertoo ja toteaa, että laboratorion perusti alun perin professori Hannu Korkeala.

"Maailmanlaajuisesti arvioiden olemme kolmen parhaan C. botulinum -tutkimuslaboratorion joukossa, mutta uusien rahoitusten avulla tavoittelemme nyt johtoasemaa."

Tutkimusryhmä koostuu tällä hetkellä kahdesta post doc -tutkijasta, kuudesta väitöskirjantekijästä ja vaihtelevasta määrästä lisensiaatti- ja maisterivaiheen opiskelijoita sekä harjoittelijoita.

"Meillä on toimivat kontaktit globaalisti kaikkiin C. botulinum -tutkijoihin, mutta erityisen keskeisessä roolissa on ollut yhteistyö Nottinghamin yliopiston kanssa, jossa on kehitetty työkaluja klostridibakteerien geneettiseen manipulaatioon. Tämä on perusedellytys tekemisellemme mutta on ollut mahdollista vasta vähän aikaa."

"Muita tärkeitä yhteistyökumppaneita ovat Lissabonin uuden yliopiston ITQB-instituutti, jossa on vahvaa osaamista solutason bakteeritutkimuksissa, sekä bakteeritutkimuksen Mekkana tunnettu ranskalainen Pasteur-instituutti", iloitsee Lindström.

Artikkeli perustuu Helsingin yliopiston tiedotteseen.

Uutta voimaa antibiooteille? Oululaistutkijat keksivät bakteerien suojausmekanismin

To, 03/17/2016 - 12:00 Jari Mäkinen

Oulun yliopiston kasvimikrobiologian dosentti Anna Maria Pirttilän tutkimusryhmä on löytänyt uudenlaisen bakteerien puolustusmekanismin. 

Tietoa voidaan käyttää hyödyksi etsittäessä uusia antibiootteja tai lääkkeitä sellaisiin sairauksiin, jotka johtuvat hapen haitallisten muotojen eli niin sanottujen happiradikaalien toiminnasta. Tällaisia ovat muun muassa silmänpohjanrappeuma ja Alzheimerin tauti.

Tutkimuksen lähtökohtana oli ymmärtää, miten männyn ja bakteereiden välinen yhteiselo toimii. Kasvit ja eläimet puolustautuvat mikrobeja vastaan, olivatpa ne sitten hyviä tai pahoja. Ne tuottavat suuria määriä happiradikaaleja infektiokohtaan estääkseen mikrobien pääsyn eteenpäin.

Bakteerit ovat kehittäneet oman suojautumistavan happiradikaaleja vastaan. Bakteerien runsaana energiavarastona toimivan pitkän rasvahappoketjun, polyhydroksibutyraatin, havaittiin yllättäen toimivan antioksidanttina, kun se oli pilkottuna pieniin osiin.

Bakteerit kykenevät tuottamaan rasvahappoketjua todella suuria määriä, jopa 90 prosenttia solun massasta. Tämä kuvastaa miten tärkeä yhdiste on bakteerille silloin, kun antioksidanttia tarvitaan nopeasti suuria määriä.

Tiedon avulla voidaan etsiä sellaisia antibiootteja, jotka tuhoavat bakteereilta kyvyn tuottaa pitkää rasvahappoketjua.

Osana tohtorikoulutettava Janne Koskimäen kasvimikrobiologian alaan kuuluvaa väitöskirjaa, tutkimus osoitti tämän suojautumistavan olevan erittäin laajalle levinnyt bakteerikunnassa ja liittyvän yleisesti bakteerien kykyyn sietää vaikeita olosuhteita.

Tutkimuksessa havaittiin, että bakteerien energiavaraston hajotusprosessissa syntyneet lyhyet rasvahappoketjut hävittivät hapen myrkyllisintä muotoa, hydroksyyliradikaalia, jopa kolme kertaa tehokkaammin kuin tunnetuin solujen luonnollinen antioksidantti, glutationi, ja peräti yli kymmenen kertaa paremmin kuin C-vitamiini. Yhdisteiden havaittiin suojaavan myös hiivasoluja hapettavilta olosuhteilta.

Tutkimuksen tulokset julkaistiin 14. maaliskuuta 2016 Nature Chemical Biology-lehdessä.

Saatuja tuloksia hyödynnetään parhaillaan Oulun yliopistossa käynnissä olevassa Tekesin TUTLi (tutkimuksesta uutta tietoa ja liiketoimintaa)-rahoitteisessa hankkeessa, jossa kehitetään hoitomuotoa silmänpohjanrappeumaan. Suomen Akatemia on tukenut Koskimäen tutkimusta.

Juttu perustuu käytännössä kokonaan Oulun yliopiston viestinnän artikkeliin, jonka on kirjoittanut Maarit Jokela.

Otsikkokuvassa yksittäiset Methylobacterium extorquens -bakteerin solut näkyvät harmaina. Solujen sisällä punaisena hohtavat pyöreät jyväset ovat polyhydroksibutyraattia.

Toinen pulahdus Vostok-järveen

To, 02/19/2015 - 02:22 Jarmo Korteniemi

Venäläiset tutkijat ovat poranneet toisen reiän Vostok-järveen. Järvi sijaitsee lähes nelikilometrisen jääpeitteen alla Etelämantereella. Se on ollut eristyksissä ulkomaailmasta 15 miljoonan vuoden ajan.

Ensimmäinen kairaus Vostokin tehtiin vuonna 2012. Tutkijat ilmoittivat pian sen jälkeen löytäneensä saaduista näytteistä aiemmin tuntemattomien bakteerien perimää. Löytö kuitenkin kyseenalaistettiin, sillä näytteisiin oli sekoittunut kairauksessa käytettyjä nesteitä. Kaira oli nimittäin nostettu pois liian nopeasti, ja syntynyt alipaine loiskautti oitis suuren annoksen järvivettä kairaa vasten, saastuttaen näytteet.

Otsikkokuvassa oleva rakennelma on Vostok-tutkimusasemalla olevan poran poraustorni.

Järven pinta saavutettiin toisen kerran 25.1.2015. Ja nyt tutkijat osasivat olla varovaisempia. He uskovatkin saaneensa tällä kertaa näytteitä varmasti puhtaasta järvivedestä. He käyttivät vanhaa porausreikää aina 3400 metrin syvyyteen asti, mutta käänsivät sitten kairan eri suuntaan. Lopuksi kairaa nostettiin riittävän hitaasti. Näin vesi pääsi nousemaan rauhallisesti - kairan perässä - ja jäätyi pian paikalleen. Jäätynyt järvivesilieriö nostettiin lopuksi kairan avulla pinnalle.

Jäänalaisen järven pinta on porauskohdassa Vostok-aseman alla noin 3770 metrin syvyydessä. Tutkijat uumoilevat saavansa nyt saadut kiinnostavat vesinäytteet – yhteensä noin 40 litraa – analysoitavaksi toukokuussa.

Asiasta ovat kertoneet mm. New Scientist, RT ja Sputnik International (entinen RIA Novosti). Sputnikin sivulla on myös mainio grafiikka Vostok-asemasta, syvyyksissä olevasta järvestä ja sen poraamisesta.

Omituinen järvi

Vostok-tutkimusaseman kohdalla jään alla olevan järven olemassaoloa alettiin epäillä neuvostoliittolaisten tutkijoiden 1960-luvulla suorittamien seismisten mittausten perusteella.Yhdysvaltalais-brittiläis-tanskalainen tutkimusryhmä kartoitti sitä ilmasta 1970-luvulla, mutta vasta ESAn tutkasatelliitti ERS-1:n mittauksista vuonna 1996 saatiin selville miten suuri järvi oikein on: Vostok on ylivoimaisesti suurin lähes 150 tunnetusta jäätikönalaisesta järvestä, sillä sen pituus on noin 250 km ja leveys noin 50 km.

Järvi on voinut olla jääkannen alla jopa 25 miljoonaa vuotta, joskin sen arvellaan olleen kokonaan eristyksissä "vain" noin 15 miljoonan vuoden ajan. Järvi on todennäköisesti syntynyt siten, että jää on sulanut joko suuren itse aiheuttamansa paineen alla tai jäätikön alla olevan tulivuoritoiminnan vuoksi. Tiedetään, että Etelämantereella on vulkaanista aktiivisuutta, mutta järven pohjalta ei ole saatu tietoa siitä. 

Järven poikki kulkee harjanne, joka jakaa sen kahteen syvään osaan. Vuonna 2005 siitä löydettiin myös saari, ja satelliittimittausten perusteella voidaan päätellä, että sen pohjalla on sedimenttikerros. Järvessä on myös havaittu tapahtuvan 1–2 senttimetrin vuorovesivaihtelua.

On mahdollista, että ammoisen veden lisäksi järvessä on mikrobitasoista elämää. Siksi sitä tutkitaan hyvin varovasti, jotta porauksilla ei saastutettaisi vettä tai siellä olevaa elämää.

Alla ilmakuva Vostok-tutkimiusasemalta. Se on eräs kylmimmistä paikoista koko maapallolla.

Eliö, joka ei ole muuttunut kahteen miljardiin vuoteen

Ti, 02/03/2015 - 23:45 Jarmo Korteniemi
Kuva: UCLA Center for the Study of Evolution and the Origin of Life

Kuva: UCLA Center for the Study of Evolution and the Origin of Life

Tutkijat ovat löytäneet tähän mennessä pisimpään muuttumattomana pysyneen eliön. Kyse on rikin kierrolla elävistä bakteereista syvänmeren sedimenteissä.

Ne olivat olemassa samanlaisina ennen kuin kasveista tai eläimistä edes oli tietoa. Eikä evoluutio vaikuta muokanneen bakteereja tuona aikana tippaakaan.

Asia selvisi tutkimuksessa, jossa vertailtiin eläviä ja fossilisoituneita bakteereja, sekä kumpienkin muodostamia kolonioita. Tutkijat eivät löytäneet vartailukappaleiden väliltä kehityksestä kertovia merkittäviä eroja.

Kansainvälinen tutkijaryhmä raportoi löydöstään tiedejulkaisu PNAS:ssa.

Mudassa möyriviä fossiileja

Fossilisoituneet bakteerit elelivät aikanaan syvänmeren pohjan sedimenttikerroksissa prekambrikaudella. Samoihin aikoihin kun planeetan kaasukehän happipitoisuus oli roimassa kasvussa. Samalla myös sulfaattien ja nitraattien pitoisuudet kasvoivat. Bakteerit tarvitsevatkin juuri näitä aineita selvitäkseen ja kukoistaakseen mutaisessa ja suolaisessa ympäristössään. Tai ainakin niiden nykyään elävät sukulaiset.

Nykyisin fossiilit löytyvät kivettyneinä Länsi-Australiasta: Turee Creekin (2,3 miljardia vuotta vanha) ja Duck Creekin (1,8 miljardia vuotta) serttimuodostumista. (Sertti on tiivistä, kovaa ja mikrokiteistä kiveä. Piikivi on eräs serttityyppi.)

Tutkimuksessa fossiileja vertailtiin sekä toisiinsa, että Chilen rannikolta vuonna 2007 löytyneisiin ja yhä vastaavissa oloissa kukoistaviin bakteereihin. Kaikki kolme ovat ulkoisesti identtisiä keskenään. Bakteerisolujen morfologiassa tai eliöiden järjestäytymisessä kolonioihin ei vaikuta kolmessa kohteessa olevan mitään eroja. Tästä tutkijat päättelivät, että eliöt ovat hyvä esimerkki hyvin hitaasta - ehkä jopa täysin pysähtyneestä - kehityksestä.

Bakteerien "muuttumattomuus" on kuitenkin vain tulkintaa ja ominaisuuksien vertailua. Tutkimus ei varmista asiaa aukottomasti, vaan antaa viitteitä muuttumattomuudesta.

Täyden varmuuden muuttumattomuudesta voisi tuoda vain DNA:n ja muun molekyylitason vertailu. Fossiilit eivät kuitenkaan säilö noita tietoja yhtä hyvin kuin muotoja ja laajempia rakenteita - etenkään näin vanhojen fossiilien tapauksessa. Ilman aikakonetta molekyylibiologinen vertailu lienee siis mahdotonta.

Fossiilien tutkimuksessa käytettiin monia eri keinoja. Raman-spektroskopialla päästiin käsiksi kivien sisäiseen koostumukseen ja kemiaan. Konfokaalilaserskannausmikroskoopilla taas saatiin tehtyä teräviä 3D-malleja itse fossiileista.

Muuttumattomuus on todiste evoluutiosta

On ällistyttävää, että mikään eliö pystyisi säilymään muuttumattomana yli kaksi miljardia vuotta - puolet koko planeetan historiasta. Koska evoluutio on kuitenkin havaittu yleinen fakta (kuten vaikkapa gravitaatiokin), näennäisen kehityksen puute vaatiikin nyt selitystä.

Evoluutioteoria tunnetaan enemmänkin lajien muuntumisen kuin muuntumattomuuden selittäjänä. Yksinkertaistettuna: Jotkut muunnokset sopeutuvat paremmin ympäristöön kuin toiset, ja näin hiljalleen lajit muuttuvat ympäristöönsä paremmin sopiviksi. Kyse on kuitenkin saman kolikon kahdesta puolesta. Kun valintapaine puuttuu, muutosta ei tapahdu.

Tutkitut bakteerit olivat jo yli kaksi miljardia vuotta sitten sopeutuneet ympäristöönsä niin hyvin, ettei niiden ole tarvinnut muuttua. Bakteerien perimässä varmaankin tapahtuu mutaatioita, mutta niistä ei ole hyötyä, eivätkä ne tuo kilpailuetua. Näin uudet muodot eivät saa jalansijaa. Populaatio pysyy jotakuinkin ennallaan.

 

Tutkimus paljasti myös, että sekä fossiilien että nykyisin elävien bakteerien elinympäristötkin vaikuttivat identtiseltä. Tämä on koko mystisen ongelman avain. Merenpohjan sedimenttiympäristöstä lienee - ainakin paikoin - aina löytynyt samanlainen ekolokero bakteereille. Runsaan kahden miljardin vuoden ajan.

Tutkimuksen johtaja J. William Schopf (UCLA) kiteyttää: "Jos ne [bakteerit] olisivat muuttuneet, mutta ympäristö ei, niin se olisi osoittanut että ymmärryksemme evoluutiosta ja luonnonvalinnasta on vakavasti puutteellinen. Tämä sopii erittäin hyvin [Darwinin] ideaan."

Kyse on jälleen näytöstä evoluutioteorian puolesta. Jos sellaista enää kaivattiin.

Lähteet: Tutkimus PNAS-lehdessä sekä Kalifornian yliopiston tiedote