Fossiilit kävivät avaruudessa

Avaruudessa käynyt fossiili ja todistus lennosta
Avaruudessa käynyt fossiili ja todistus lennosta

Kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja ammoisen etanan kuori kävivät 105 kilometrin korkeudessa viime elokuussa tehdyllä New Shepard -aluksen avaruushyppäislennolla NS-26. 

Blue Originin New Shepard -raketti ja avaruusalus tekivät edellisen hyppäyslentonsa juuri ja juuri avaruuden puolelle 4. helmikuuta 2025. Kyseessä oli miehittämätön lento, jonka kyydissä oli tutkimuslaitteita.

Kolme lentoa aikaisemmin, elokuun 29. päivänä 2024, oli kyydissä kuitenkin jotain hyvin erikoislaatuista: fossiileita. 

Lennon miehistöön kuului paitsi 21-vuotias Pohjois-Carolinan yliopiston opiskelija Karsen Kitchen, nuorin virallisesti avaruuden puolella käynyt nainen, niin myös Floridan yliopiston proferssori Rob Ferl.

Ferl on geenitutkija, joka on selvitellyt pitkään kiihtyvyyden ja mikropainovoiman vaikutuksia kasveihin.

Hän on ollut Floridan yliopiston professori vuodesta 1980 ja toimii tällä hetkellä UF Astraeus Space Instituten johtajana. Vaikka hän on innokas lentäjä, Ferlillä on kova korkean paikan kammo. Kuten monille korkeanpaikankammoisille lentäjille, ei koneessa oleminen ja lentäminen ole lainkaan haastavaa, mutta varsin absurdit lentämiseen liittyvät asiat saattavat olla: Fern kertoo Floridan yliopiston tiedotteessa, että hänen avaruusmatkansa vaikein osa oli lyhyt kävely laukaisualustalta rakettiin parikymmentä metriä korkealla olevan rampin päällä.

"Olin huolissani siitä, että kävely ramppia pitkin kapseliin saisi minut hermostumaan, ja se oli aika lähellä", Ferl kertoo.

Miehistä laukaisualustalla

NS-26 -lennon osanottajat laukaisualustalla. Ramppi tästä avaruusalukseen oli samanlaista ritilää kuin tässä. Ferl on kuvassa takana keskellä. Kuva: Blue Origin.

 

Ferlillä oli avaruuslennolla näytteenottoputkia, jotka sisälsivät pieniä kasveja ja jotka oli kiinnitetty hänen pukunsa jalkoihinsa tarranauhalla. 

Laukaisun, huippukohdan ja laskeutumisen aikana hän painoi kunkin putken kiinnitettyjä mäntiä, jotka vapauttivat kiinnitysaineen, joka kemiallisesti jäädytti jokaisen kasvin solutasolla. Myöhemmin, kun hän oli palannut Maahan, hän analysoi erot kolmen ryhmän välillä. 

Ferl oli liittynyt mukaan lennolle virallisesti tätä tehtävää tekemään – ensimmäisenä Nasan tukemana tutkijana – mutta luonnollisesti hän oli itsekin innoissan kokemuksesta.

"Kuvittele olevasi merentutkija, joka ei ole koskaan ollut veneessä, tai joku, joka tutkii metsiä mutta ei ole koskaan koskenutkaan puuhun, tai paleontologi, joka ei ole koskaan löytänyt fossiilia. Olen ollut avaruusbiologi 25 vuotta. Nyt olen vihdoin ollut avaruudessa."

Omien näytteidensä lisäksi Ferl halusi jakaa matkansa muiden yliopiston tutkijoiden kanssa.

Siten mukaan pääsi myös kaksi 56 miljoonaa vuotta vanhaa leukaluuta ja pleistoseenikauden jääkausia edeltäneellä ajalla eläneen petoetanan kuorta.

Fossiilit olivat peräisin Floridan luonnonhistoriallisesta museosta. Jon Bloch, selkärankaisten paleontologian kuraattori, ja Roger Portell, selkärangattomien paleontologian kokoelman johtaja valitsivan avaruuskeikalle päässeet fossiilit.

 

Fossiilien piti olla pieniä, mutta Bloch halusi myös jotain merkittävää, ainutlaatuista. Siksi hän rajasi valintansa  selkärankaisten paleontologian kokoelmassa olevien yli 1,5 miljoonan näytteen joukosta lyhyeen, mutta merkittävään vaiheeseen Maan historiassa. 

Paleoseenia seurannut eoseenin ensimmäinen vaihe noin 48 – 56 miljoonaa vuotta sitten oli noin 200 000 vuotta kestänyt globaalin lämpenemisen jakso, joka tunnetaan epätavallisen pienistä eläimistä.

"Se oli intensiivinen aika, joka vastaa sitä, mitä ennustamme nykyiselle ilmastonmuutokselle, paitsi että nyt lämpeneminen tapahtuu paljon nopeammin", hän sanoi.

Maailmanlaajuiset lämpötilat nousivat 5–8 celsiusastetta tämän pari sataa tuhatta vuotta kestäneen termisen häiriön aikana. Jopa 50 % meren mikro-organismeista kuoli sukupuuttoon, kun maailman valtameret happamoituivat. 

Maalla nisäkkäät selvisivät sukupuuttoaallosta vähemmillä menetyksillä, koska evoluutio muokkasi niistä pienempiä. Kun esine kutistuu, sen tilavuus pienenee enemmän kuin sen pinta-ala. Tämä helpottaa pienempien eläinten lämmön haihduttamista verrattuna suurempiin.

Jotkut lajit kutistuivat jopa 30 % alkuperäisestä koostaan eoseenin alkurykäyksen lämpömaksimin aikana. 

Maailman ensimmäinen kädellinen oli Teilhardina, joka olisi mahtunut nykyihmisen kädelle seisomaan. Palanen sellaista piipahti avaruudessa. Kuva: Florida Museum / Jeff Gage.

 

Bloch valitsi mukaan myös varhaisimman tunnetun hevosen Sifrhippus sandraen fossiilipalasen. Hevonen painoi todennäköisesti vain 8,5 kiloa, eli ponikin on siihen verrattuna jättiläinen. Kuva: Florida Museum / Jeff Gage.

 

Portell, joka on paleontologiksi päätynyt ravintolapäällikkö ja pankkiiri, otti hieman erilaisen lähestymistavan fossiilin valinnassa.

"Yritin ajatella jotain avaruuteen liittyvää, kuten tähtikuoria ja kuuetanoita", hän sanoi.

Portell päätyi 2,9 miljoonaa vuotta vanhaan kuuetanaan osittain tämän ryhmän oudon ja kiehtovan luonnonhistorian vuoksi.

 

Fossiileita on ollut aikaisemminkin avaruudessa: pieniä fossiileja lepakoista, useista dinosauruksista, crinoidista, hominidista ja trilobiitista on kiikutettu avaruuteen ja takaisin.

Kyseessä oli kuitenkin ensimmäinen kerta, kun fossiileita oli mukana tällaisella suborbitaalisella hyppäyslennolla juur avaruuden puolelle. Tieteellistä iloa tällaisesta ei ole, mutta muuta iloa sen edestäkin!

Juttu perustuu Museum of Floridan tiedotteeseen ja kuviin.

Marsiin ennen vuotta 2030? Jari Mäkinen Ti, 28/01/2025 - 23:19
Mars väreissä (Kuva ESA)
Mars väreissä (Kuva ESA)

Monet tiedotusvälineet ovat kertoneet Yhdysvaltain presidentti Trumpin ja hänen uuden sydänystävänsä Elon Muskin visioista Marsin suhteen: virkaanastujaispuheessaan Trump hahmotteli ihmisten lähettämistä Marsin pinnalle aivan lähiaikoina. Kuinka todennäköistä tämä on?

Musk, tyypilliseen ylioptimistiseen tapaansa viestitti X:ssä viime syyskuussa, että "ensimmäinen miehitetty lento Marsiin tapahtuu neljän vuoden kuluessa" – siis vuonna 2028.

Trump puolestaan on usuttanut Nasaa toimimaan, ja avaruusjärjestö tutkii tällä haavaa mahdollisuuksia lähettää ihmiset lennolle Marsiin ja takaksin 2030-luvun alussa.

Helsingin sanomat kyseli asiaa myös Esko Valtaojalta, joka muisti mainita tuossa haastattelussa kanssani syksyllä 2016 lyömänsä vedon.

Esko kertoo vedostamme alun perin Kohti ikuisuutta -kirjassaan (sivu 221). Löimme vetoa siitä, pääseekö ihminen Marsiin ennen vuotta 2030; häviäjä antaa voittajalle pullollisen Château Latouria, "eikä sitten mitään halvempaa vuosikertaa", kuten Esko toteaa mielestäni hieman sovittua hieman täsmällisemmin kirjassa.

No, se mikä on painettu, on totta.

Kovasti toivon edelleen voittavani vedon, mutta nyt melkein kymmenen vuotta myöhemmin en usko voittavani. Joka tapauksessa nyt en löisi enää tuota vetoa.

Miksikö?

Lyhyesti: Starship on kovasti myöhässä siitä, mitä tuolloin oletettiin. Musk oletti tuolloin Starshipin tulevan käyttöön jo 2020-luvun alussa ja olisi tehnyt vuoden 2023 loppuun mennessä jo ensimmäisen turistilennon Kuun ympäri.

Starship Kuun luona (visualisointi)

Vaikka suhtauduin tuolloin hieman epäillen noihin aikatauluihin, niin on ollut pieni pettymys, että Starship teki ensilentosa vasta huhtikuussa 2023. Ja sen jälkeen on mennyt jo kaksi vuotta, eikä alus ole vielä päässyt edes kunnolla kiertoradalle.

SpaceX olisi kyllä jo voinut kiihdyttää Starshipin Maata kiertämään pitkän heittoliikkeen sijaan edellisillä koelennoilla, mutta ei tehnyt sitä turvallisuussyistä. Starship on sen verran suuri alus, että sen moottorien toiminta avaruudessa täytyy testata vielä kunnolla, ennen kuin alus uskalletaan viedä kiertoradalle. Elleivät moottorit toimi, alus jäisi avaruuteen jättimäisenä avaruusromuna ja putoaisi aikanaan holtittomasti alas. Se ei olisi kivaa.

On siis hyvä, että cowboy-maineestaan huolimatta SpaceX tekee koelentojaan varsin varovasti.

Mutta se, että Starship saataisiin tästä lentämään Marsiin vain neljässä vuodessa, on erittäin epätodennäköistä. SpaceX pystyy selvästi paljoon, mutta tuskin tähän. Kaiken täytyisi mennä tulevilla koelennoilla täydellisesti, ja paitsi SpaceX:n, niin myös Nasan ja Yhdysvaltojen pitäisi keskittyä marsmatkaan lähes yhtä totaalisesti kuin 1960-luvulla keskityttiin lentämään Kuuhun.

Ja sittenkin tekee tiukkaa, koska Marsiin ei lennetä ihan noin vain.

Edellisellä kaudellaan presidentti Trump sekoitti useammankin kerran Marsin ja Kuun keskenään, ja voi olla, että hänen mielessään Mars on jossain vain hieman Kuuta kauempana. Musk sen sijaan tietänee miten Marsiin mennään, mutta pitää tyypilliseen tapaansa ilmassa toiveikkuutta.

Käyn seuraavassa läpi edessä olevia haasteita.

1. Taivaanmekaniikka

Paras tapa lähettää alus Marsiin on tehdä se niin sanotun opposition aikaan. Eli silloin, kun Maa ja Mars osuvat kiertoradoillaan siten, että olemme lähellä toisiamme. Näin käy kerran noin kahdessa vuodessa, tarkalleen keskimäärin 779,94 vuorokauden eli vajaan 26 kuukauden välein.

Juuri nyt olemme oppositiossa: Mars oli 16. tammikuuta 96,08 miljoonan kilometrin päässä meistä. Viime vuosikymmeninä Marsiin on lähetetty luotaimia jokaisen opposition aikaan, mutta sitten 2020 laukaistun Perseverance-kulkijan on ollut hiljaisempaa.

Nyt tosin on lähdössä kaksi ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) -luotainta. Näiden uudenlaisten pikkuluotainten piti lähteä matkaan jo lokakuussa, mutta nyt laukaisu on suunnitteilla huhtikuulle.

Parasta olisi lähettää luotaimet siten, että ne olisivat juuri opposition aikaan noin puolimatkassa. Siis kolme-neljä kuukautta ennen oppositiota, jolloin ne saapuvat perille nelisen kuukautta opposition jälkeen. ESCAPADE-luotaimet laukaistaan uudella New Glenn -raketilla, ja sen ensilento viivästyi, eikä lopulta luotaimia uskallettu lähettää ensilennolla, joten nyt matkaan päästään vasta keväällä. Luotaimet ovat pieniä ja New Glenn on voimakas, joten puolen vuoden myöhästyminen ei haittaa.

Marsiin voitaisiin kyllä laukaista luotaimia milloin vain, mutta se vaatii vain paljon energiaa ja siitä huolimatta matka-aika saattaa olla hyvin pitkä. Vaikka käytössä olisi todella voimakas raketti, kuten Starship (tai jotain vieläkin äreämpää), niin laukaisut kannattaisi tehdä oppositioiden aikaan.

Marsin ja Maan radat

Seuraava oppositio on helmikuussa 2027 ja sitä seuraavat maaliskuussa 2029 sekä toukokuussa 2031. Ne kaikki ovat "huonoja", koska planeettojemme välinen etäisyys on pienimmilläänkin varsin suuri: 101, 96 ja 82 miljoonaa kilometriä. Tämä tarkoittaa käytännössä sitä, että aluksen massa voi olla varsin pieni verrattuna "hyviin" oppositioihin, jolloin välimatka on vain kuutisenkymmentä miljoonaa kilometriä.

Näin on sitä seuraavina oppositioina kesäkuussa 2033 ja syyskuussa 2035, jolloin välimatkat ovat 63 ja 56 miljoonaa kilometriä.

Käytännössä siis ennen vuotta 2030 on enää kaksi mahdollisuutta lähettää Marsiin alus ja/tai aluksia.

Starship nousee 4. lennolleen.

2. Starship vaati paljon lentoja vielä

Jos Starshipin koelennot olisivat alkaneet aikaisemmin ja koelento-ohjelma olisi mennyt eteenpäin nopeasti, niin periaatteessa ensimmäinen koelento Marsiin olisi voinut olla nyt tänä vuonna. Mutta nyt se voi olla aikaisintaan 2027.

Ja ennen kuin Starship voi lähteä Marsiin, pitää tapahtua todella paljon.

Starship – itse avaruusalus ja sen matkalle laukaiseva Super Heavy -boosteri – on monimutkainen systeemi, joka on suunniteltu tekemään lopulta lentoja hyvin usein. SpaceX:n mukaan boosteri voisi olla valmis uuteen lentoon vain noin kolmen tunnin päästä laskeutumisestaan, joka tapahtuu nykyisten Falcon 9 -rakettien ensimmäisten vaiheiden tapaan, mutta suoraan laukaisutelineen viereen.

Kahdella koelennolla Super Heavy on onnistunut jo palaamaan lähtöpaikalleen. Visio tulevasta näyttää toteutuvan, vaikka laukaisualustaa on täytynyt vielä korjailla paljon kunkin laukaisun jälkeen.

Starship on avaruuteen päästyään aika kuivilla ajoaineista, joten sitä pitää tankata ennen kuin se voi jatkaa kohti Kuuta tai Marsia. Lentoja voi olla viisi tai kuusi, riippuen siitä kuinka suureksi Starship lopulta tehdään. Nyt koelennetty versio 2 on jo suurempi kuin alkuperäinen.

Starship tankkaa avaruudessa

Joka tapauksessa lento Kuuhun tai Marsiin vaatii yhden laukaisun sijaan yhden ja lisäksi monta tankkeriavaruusaluksen laukaisua. Kenties jopa kuusi.

SpaceX on suunnitellut tälle vuodelle 2025 kaikkiaan 25 Starship-lentoa, joista suuri osa liittyy syksyllä aikaisintaan olevaan koelentoon kohti Kuuta.

Nasa on tilannut SpaceX:ltä laskeutujan kuulentojaan varten, ja tuon aluksen koelennot ovat vielä edessä. Samaa, tai hyvin samanlaista alusta voidaan käyttää myös Mars-lentoihin. Ennen lentoa Marsiin pitää alusta testata vielä Kuussa – ja nähtäväksi jää, miten Nasa järjestelee uudelleen tulevia kuulentoja.

Starship Kuussa (visualisointi)

3. Lento Marsiin on PALJON vaikeampi kuin lento Kuuhun

Starshipin ensimmäiselle lennolle Marsiin ei varmasti laiteta ihmisiä mukaan. Musk on puhunut yhden aluksen sijaan useammista, joilla paitsi lentämistä Marsiin testataan, niin viedään sinne myös myöhemmin tarvittavaa rahtia.

Jos lento tai lennot sujuvat hyvin, niin voisivatko ihmiset sitten lähteä kyytiin vuonna 2029? Kyllä – mutta vain jos turvallisuudesta tingitään.

Tällä hetkellä ei ole olemassa kaikkea tekniikkaa, mitä miehitetyn Mars-lennon tekemiseen vaaditaan. Tiedämme kyllä periaatteessa hyvin mitä tarvitaan, mutta perinteiseen tapaan tekniikkan kehittämiseen ja testaamiseen menisi vuosikaupalla aikaa. Orion-kuualusta on tehty jo vuosikymmenen, eikä sillä uskalleta vielä lähteä matkaan.

Starship laskeutuu Marsiin

Vaikka SpaceX laittaisi kehitykseen vauhtia, niin ihmisten Marsiin kuljettamiseen tarvittavan Starshipin tekeminen kestää vielä kauan. Ongelmia kun on paljon tekniikan yleisestä luotettavuudesta aurinkomyrskyjä vastaan suojautumiseen. Ihmisen fyysinen ja psyykkinen kesto näin pitkällä JA kauas planeettainväliseen avaruuteen menevällä lennolla on myös iso kysymysmerkki.

Kymmenen vuoden takaisessa Mars500 -kokeessa kuusi koehenkilöä teki matkan Marsiin ja takaisin maanpäällisessä Mars-aluksen mallikappaleessa, ja tulokset olivat ristiriitaisia. Olin itse tuolloin työssä Euroopan avaruusjärjestössä ja seurasin koetta hyvin läheisesti, ja suhtaudun oikeaan Mars-lentoon tuohon tyyliin varauksin.

Kolme kuudesta Mars500-osanottajasta

Mars500:n aikana tehtiin useita hätätilanneharjoituksia. Kuva on yhdestä sellaisesta. Suuri ero oikeaan Mars-lentoon verrattuna oli se, että Mars500-miehistö olisi voinut kävellä ulos "aluksestaan" koska tahansa. Oikeasta aluksesta ei voi.
Kuva: ESA/Mars500 (muut kuvat SpaceX, paitsi otsikkokuva, joka on myös ESA:n)

 

Ainoa tapa toteuttaa lento on lähteä matkaan vain vähän testatulla aluksella, olettaa että matkan aikana tulevia vikoja voidaan korjata mukana olevilla laitteilla ja luottaa yksinkertaisesti hyvään onneen. Paluumatkaa ei myöskään voida taata.

Lähtijöitä tuollaisellekin matkalle varmasti löytyy. Voi ajatella, että samaan tapaan kuin ihmisten annetaan vapaasti kiivetä Himalajalle tai tehdä muita vaarallisia temppuja, niin miksi vapaaehtoisten ei annettaisi lähteä tällaiselle avaruusmatkalle?

Yli 900 ihmistä on kuollut Himalajalla vuoden 1950 jälkeen, eikä se pahemmin saa aikaan kauhistusta. Kuolema avaruudessa sen sijaan saisi aikaan suurta älämölöä.

Siis: ainoa tapa, millä voisin edelleen voittaa vedon Eskon kanssa on antaa vapaaehtoisille lupa lähteä vaaralliselle matkalle Marsiin ja tehdä Starshipillä niin paljon koelentoja, että se olisi valmis miehitettyyn lentoon vuonna 2029. Muussa tapauksessa aika ei riitä.

Vuosi 2033 sen sijaan voisi olla mahdollinen. Jos voisin lyödä nyt uudelleen vetoa, niin sanoisin 2033.

Kuvitelma Mars-siirtokunnasta

SpaceX:n Mars-visioihin kannattaa suhtautua varsin varauksin.

---

Teksti on julkaistu myös Ursan blogina.

Tätä kuvaa Andromedan galaksista otettiin vuosikymmenen ajan

Andromedan galaksi
Andromedan galaksi

Tässä on valokuva, jonka ottamiseen kului yli 10 vuotta: suurimmassa ja tarkimmassa koskaan Andromedan galaksista tehdyssä mosaiikkikuvassa on yli 600 yksittäistä kuvaa. Siinä on 200 miljoonaa tähteä ja 2,5 miljardia pikseliä.

Hubble-avaruusteleskooppi vietiin avaruuteen huhtikuussa 1990, eli se on ollut toiminnassa kohta 35 vuoden ajan. 

Näinä vuosikymmeninä yksi sen kohteista on ollut Andromedan galaksi (M31), jonka voi nähdä sopivan pimeässä paikassa myös paljain silmin heikkona, sumumaisen sikarin muotoisena kohteena taivaalla.

Sata vuotta sitten tähtitieteilijä Edwin Hubble – jonka mukaan teleskooppikin on nimetty – osoitti ensimmäisenä, että Andromedan galaksi oli itse asiassa kaukana meidän oman Linnunradan galaksin ulkopuolella. Se oli mullistus maailmankuvassamme, sillä sitä ennen tähtitieteilijät olivat ajatelleet, että Linnunrata on kaikki mitä on. Se on koko maailmankaikkeus.

Matkaa Andromedan galaksiin on noin 2,5 miljoonaa valovuotta, eli se on noin 25 Linnunradan halkaisijan päässä meistä. Nyt tiedämme, että galakseja on valtavan hurjan paljon enemmän ja paljon, paljon kauempanakin.

Nyt julkaistun mosaiikkikuvan ottaminen alkoi voin vuosikymmen sitten Panchromatic Hubble Andromeda Treasury (PHAT) -hankkeena. Kuvia otettiin hakdella Hubblen kameralla (Advanced Camera for Surveys ja Wide Field Camera) lähiultravioletin, näkyvän ja lähi-infrapunaisen aallonpituuksien alueella. 

Kohteena oli tuolloin Andromedan pohjoinen puolikas.

Sen jälkeen tuli Panchromatic Hubble Andromeda Southern Treasury (PHAST) -hanke, jonka puitteissa samoilla kameroilla kuvattiin lisäksi noin 100 miljoonaa tähteä Andromedan eteläiseltä puolelta. 

Yhdessä nämä kattavat koko Andromedan, joka nähdään hyvin levymäisenä aika hyvin suoraan sivusta; naapurimme on kallistunut 77 asteen kulmassa meihin. 

Kuvissa olevien noin 200 miljoonan tähden iät, massat ja alkuaineiden peruskoostumukset on saatu nyt kartoitettua.

Eteläinen puoli on itse asiassa jännempi kuin pohjoinen puoli, koska se kertoo paljon siitä, miten Andromedan galaksi on syntynyt. Todennäköisesti Andromeda on yhdistynyt yhden tai useamman galaksin kanssa. Hubblen kuvan avulla voidaan haarukoida nyt erilaisia hahmotelmia yhdistymishistoriasta ja galaksin levyn kehityksestä.

Vaikka Linnunrata ja Andromeda syntyivät todennäköisesti suunnilleen samaan aikaan useita miljardeja vuosia sitten, havaintoaineisto osoittaa, että niillä on hyvin erilaiset kehityshistoriat, vaikka olemme naapureita.

Andromedassa näyttää olevan enemmän nuorempia tähtiä. Galaksia on todennäköisesti ryöpytelty lähihistoriassa enemmän kuin meitä, ja syyllinen voi olla pienempi kiertolaisgalaksi Messier 32.

Se on puolestaan nyt kuin spiraaligalaksin riisuttu ydin, joka saattaa olla vuorovaikuttanut Andromedan kanssa menneisyydessä, ja se on menettänyt tähtiään ja kaasuaan tässä kosmisessa kolarissa. 

Vaikka kuvassa on nyt hieman yli 200 miljoonaa tähteä, ne ovat vain noin oman Aurinkomme kirkkautta kirkkaampia tähtiä. Kaikkiaan Andromedan galaksissa arvioidaan olevan jopa biljoona tähteä.

Kuvattavaa siis riittää Hubblen seuraajalle, JWST-teleskoopille.

 

Juttu perustuu ESA/Hubble -tiedotustoimiston tiedotteeseen.

Otsikkokuva: NASA, ESA, B. Williams (University of Washington)

Kosminen katoamistemppu

Neptunus peittyy Kuun taakse. Kuva: MH
Neptunus peittyy Kuun taakse. Kuva: MH

Toisinaan planeetta voi kadota taivaalta, mutta taustalla – tai pikemminkin etualalla – on yleensä hyvin näkyvä syy: Kuu

Tuskin oli Saturnuksen peittymiseltä Kuun taakse selvitty – tosin ainakin eteläisessä Suomessa tapahtuma jäi pilviverhon taakse – kun Neptunus jäi seuraavana päivänä Kuun kätkemäksi.

Jos Kuu ja planeetat vaeltaisivat taivaalla täsmälleen ekliptikan eli Auringon näennäisen reitin kohdalla, Kuu peittäisi planeetat taakseen joka kierroksella. 

Kuun rata on kuitenkin kallistunut yli viisi astetta Maan ratatasoon (eli ekliptikaan) nähden, planeettojenkin radat ovat kallellaan asteen tai pari. Siksi Kuu peittää planeettoja taakseen vain aika ajoin. Esimerkiksi Mars peittyy Kuun taakse helmikuussa, ja Venus syyskuussa.   

Siinä missä Saturnus näkyy helposti paljain silmin, Neptunus erottuu pienenä valopisteenä vain kiikarilla tai kaukoputkella. Kuun kulkeutuessa Aurinkokunnan uloimman planeetan eteen ei kiikarikaan riitä, sillä Kuu häikäisee vajaana puolikkaanakin niin, että peittymisen seuraaminen vaatii melko kookasta kaukoputkea.

Tammikuun 5. päivän sääennuste lupasi selkeää säätä jokseenkin siihen saakka, kun peittyminen alkaisi illansuussa parikymmentä minuuttia vaille viisi. Ja kas vain, lännestä alkoikin lipua pilvenriekaleita pian neljän jälkeen…

Vielä kymmenen minuuttia ennen h-hetkeä Kuun edessä oli ohutta pilveä niin, että kiertolaisemme ympärillä oli pieni kehä. Kuin ihmeen kaupalla pilvet kuitenkin kaikkosivat juuri sopivasti.

Ongelmia aiheutti myös taivaan valoisuus. Auringonlaskusta oli kulunut vain noin tunti, joten pimeys ei vielä ollut kunnolla laskeutunut. Se vaikeutti entisestään Neptunuksen erottamista Kuun kupeelta – eikä se erottunutkaan. Paitsi kuvissa ja niissäkin vain vaivoin.

Kuvauskalustona oli Nikon Z5 ja 150–600-millinen zoom-objektiivi maksimipolttovälillä. Räpsin viitisenkymmentä kuvaa erilaisilla asetuksilla, joista osuvimmiksi osoittautuivat 1/80 sekunnin valotusaika ja ISO-lukema 51 200.   

Näilläkin spekseillä Kuun taakse katoava Neptunus ikuistui vain pariin ruutuun, siinä kaikki. 

Jonkinlaista mittakaavaa ilmiölle antaa se, että tapahtumahetkellä Kuun etäisyys Maasta oli 372 230 kilometriä, Neptunuksen 4 514 292 200 kilometriä. Neptunuksen heijastama auringonvalo oli siis taivaltanut avaruudessa yli neljä tuntia ennen tallentumistaan kameran ccd-kennolle.

 

 

Video: Nyt on hyvä aika tehdä jäätyneitä saippuakuplia!

Video: Nyt on hyvä aika tehdä jäätyneitä saippuakuplia!

Pakkasesta kannattaa nauttia! Voit tehdä vaikkapa jäätyneitä saippuakuplia.

 

28.02.2018

Saippuakuplat ovat kivoja aina, mutta erityisen hauskoja todella kylmällä. Kuplat nimittäin jäätyvät nopeasti ja niiden pinnalla – ainakin vähän aikaa – näkyy upeita kiteitä.

Miten niitä voi tehdä? Yksinkertaisesti!

Tee ensin hyvää kuplantekovettä vaikkapa tällä reseptillä:

2 dl vettä
5 tl astianpesuainetta
1 tl sokeria
hieman hunajaa (tai tapettiliisteriä)

Jos nesteen haluaa tehdä oikein kunnolla, kannattaa vettä ensin lämmittää niin, että sokeri ja hunaja sulavat. Sitten lisätään astianpesuaine. Koska neste on vielä lämmitä, pitää odottaa kunnes se on viileää – mieluiten yön yli.

Puhalla sen jälkeen ulkona pakkasessa mahdollisimman suuria kuplia ja odota hetki, kun ne jäätyvät. Jäätyminen kannattaa kuvata kännykällä hyvässä valossa (ja postata vaikka Tiedetuubin Facebook-sivulla!).

Kun kupla on jäätynyt, siihen voi tehdä reikiä tai ottaa käteen, jolloin tunne on hauska, kun se sulaa saman tien käden lämmössä.

Video: Tämä kello toimii ilman huoltoa 10 000 vuotta

Video: Tämä kello toimii ilman huoltoa 10 000 vuotta

Taas yksi hullu hanke, joka kaikessa kummallisuudessaan on hyvin kiinnostava: kello, jonka suunnitellaan toimivan ainakin 10 000 vuotta.

 

27.02.2018

Ajatuksen tuhansia vuosia toimivasta, täysin mekaanisesta kellosta on peräisin Danny Hillis -nimiseltä keksijältä, joka tunnetaan kenties parhaiten Thinking Machines -supertietokoneyhtiön perustajana.

Kenties pian hänet tosin tunnetaan parhaiten tästä viimeisimmästä tempauksestaan, kellon rakentamisesta.

Hän perusti muutamien muiden kanssa The Long Now -säätiön, jonka tärkein hanke on rakentaa kello, joka kestäisi 10 000 vuoden ajan ilman huoltoa ihan itsekseen tikittämässä.

10 000 vuotta valittiin tavoiteajaksi, koska se on tarpeeksi pitkä aika, jotta ilmaston muutokset ja ihmiskunnan kehittyminen (tai taantuminen) olisivat tehneet maapallosta aivan toisenlaisen paikan.

Kellosta tehtiin prototyyppi, joka valmistui vuonna 1999. Nyt tuo kello on esillä Lontoon tiedemuseon Making of the Modern World -osastolla.

Kellon prototyyppi

Varsinainen, täysikokoinen kello on nyt valmistumassa läntisessä Teksasissa sijaitsevassa vuoressa olevaan luolaan. Toista kelloa haaveillaan sijoitettavaksi Nevadaan.

Kellossa on 316 ruostumattomasta teräksestä, titaanista ja keraamista tehtyä osaa, ja voimansa se saa Auringon valosta. Aikarauta on suunniteltu lyömään ensimmäisen kerran 10 000 vuoden kuluttua kellon käynnistämisestä.

Voi kysyä, mitä kellolle tapahtuu, jos valoa ei tule riittävästi, mutta todennäköisesti sekin on otettu huomioon...tai sitten on vain pieni, hankala kysymys.

Joka tapauksessa hanke on hauska ja yllä oleva video kertoo siitä enemmän.

Metsähovi viimein Suomen virallisessa ajassa - mittaustarkkuus paranee huimasti

Kuva: New 1lluminati / Flickr
Kuva: New 1lluminati / Flickr

Otaniemi ja Metsähovi on juuri yhdistetty toisiinsa ennennäkemättömän tarkasti. Yhdessä ne pitävät tarkkaa kirjaa Suomen virallisesta ajasta.

Suomen virallinen aika määritellään Otaniemessä. Tehtävä on kuulunut VTT:n Mittaustekniikan keskuksen (MIKES) aikalaboratoriolle jo vuodesta 2000 lähtien. 

Nyt Metsähovin observatorioaluekin on yhdistetty suoraan tähän "aikalähteeseen". Uusi, valokaapelia pitkin toimiva yhteyslinkki rakennettiin jo alkukesästä. Linkin toimintaa ja stabiilisuutta on tutkittu ja mitattu nyt kesän ajan.

Metsähovin observatorioalue sijaitsee Kirkkonummella, 50 kilometrin päässä Otaniemestä. Sieltä löytyvät sekä Maanmittauslaitoksen Paikkatietokeskuksen geodeettinen tutkimusasema että Aalto-yliopiston radiotutkimusasema. Kummankin tahon tutkimustarkkuus paranee (aikaleimojen osalta) Suomen viralliseen aikaan liittämisen johdosta.

Valosignaalin kulkuajan Otaniemestä Metsähoviin ja takaisin huomattiin vaihtelevan yhteydellä seitsemisen nanosekuntia. Syynä on pitkän valokuidun lämpölaajeneminen vuorokauden mittaan. Myös muut valokuidun ominaisuudet muuttuvat samalla hieman.

Ajansiirron tarkkuus on Maanmittauslaitoksen tiedotteen mukaan noin 0,1 nanosekuntia (10-10 s) tai jopa vieläkin parempi. Taajuuden siirrossa taas "päästään tällä hetkellä noin 15 [merkitsevän?] numeron tarkkuuteen".

Wirallinen aika

Suomen virallinen aika määritetään MIKESin aikalaboratoriossa. Ajanmääritykseen käytetään tarkkaa venäläisvalmisteista vetymaseria (CH1-75A). Sen apuna ja varmistuksena toimii lisäksi kaksi muuta vetymaseria sekä kaksi cesium-atomikelloa.

MIKESin ajan virheen sanotaan olevan noin sekunti 100 000 vuodessa. Aikaa myös verrataan jatkuvasti GPS:n avulla välitettyihin kansainvälisiin aikamittauksiin. MIKES ilmoittaa aikansa epävarmuudeksi alle 10 nanosekuntia UTC:hen (universaaliaikaan) verrattuna.

Suomen virallisen ajan poikkeamat kansainvälisestä ajasta vuosina 2011–12.

Aikamittauksessa käytetty vetymaser vastaa toimintaperiaatteeltaan laseria (säteilykimppu on koherentti, samassa tahdissa ja samaa aallonpituutta), mutta siinä käytetään näkyvän valon sijasta mikroaaltoja. Maserit ovat yksi tarkimmista nykyään käytössä olevista keinoista pitää kellot ajassa.

Maserilla tehdyn ajanmäärityksen jälkeen ajanhetki viestitetään (siirretään) Metsähoville valokuitua pitkin.

Siirron apuna käytetään uutta White Rabbit -protokollaa. Sen avulla kelloja voidaan synkronoida alle nanosekunnin tarkkuudella pitkienkin matkojen päästä. White Rabbit kehitettiin alunperin Euroopan hiukkasfysiikan tutkimuskeskuksessa CERNissä. Nimi viittaa kelloaan hermostuneesti vilkuilevaan jänikseen Liisa Ihmemaassa -kirjassa.

VTT MIKES oli yksi ensimmäisistä tutkimuslaitoksista, joka otti White Rabbitin käyttöön ajan ja taajuuden siirtämiseksi pitkien välimatkojen päähän.

Ajansiirto tukee geodeettisia mittauksia Metsähovissa. Rakenteilla oleva geodeettinen radioteleskooppijärjestelmä tarvitsee tarkan ajan ja taajuuden mittaustensa pohjaksi. Eivätkä muutkaan Metsähovin mittaukset tietystikään kärsi entistä paremmasta aikatarkkuudesta.

Aikalinkin kautta Suomen virallinen aika voidaan myös liittää entistä paremmin kansainvälisiin geodeettisiin verkostoihin, kuten GNSS-satelliittipaikannusjärjestelmään.

Radiotutkimusasemalla on lisäksi jo atomikelloja, joita voidaan vastavuoroisesti käyttää Suomen virallisen ajan varmentamiseen.

MIKES tarjoaa kellontarkistuspalvelua myös kotikäyttäjille. Se on tosin paljon Metsähoville toimitettua Suomen virallista aikaa epätarkempi. Nopealla nettiyhteydellä pääsee kuitenkin jopa alle 0,1 millisekunnin päähän virallisesta, mikä lienee riittävä useimpien kotikäyttäjien tarpeisiin.

Artikkeli perustuu Maanmittauslaitoksen tiedotteeseen.

Lisätietoa: VTT:n Mittatekniikan keskus MIKES

Otsikkokuva: New 1lluminati / Flickr

Video: Katso tämä erinomainen animaatio, jos ajan ja avaruuden luonne ihmetyttää

Video: Katso tämä erinomainen animaatio, jos ajan ja avaruuden luonne ihmetyttää

Eurooppalainen hiukkastutkimuskeskus CERN ja TED-Ed ovat tuottaneet pienen sarjan aivan erinomaisia fysiikan perusasioita esitteleviä videoita.

17.02.2017

Tässä sarjan ensimmäisessä animaatiossa fyysikot Andrew Pontzen ja Tom Whyntie (Giant Animation Studiosin piirtäminä) kertovat aika-avaruudesta ja sen olemuksesta. 

Alla ovat sarjat loput osat, joista yhdessä kyse on valon nopeudesta ja toisessa nivotaan aina-avaruus sekä painovoima yhteen.

Videot sopivat erinomaisesti myös niille, jotka tietävät tai olettavat tietävänsä mistä oikein on kyse...

Tiedetuubi suosittelee!

Syksyn taikaa: Satavuotisen kesäajan liian pitkä historia

Kuva: Matty's Flicks / Flickr
Kuva: Matty's Flicks / Flickr

Kesäaika otettiin ensi kerran käyttöön tasan sata vuotta sitten. Valoisan ajan "säästö" muodostaa vieläkin maailmanlaajuisen sekasotkun, joka aiheuttaa sekä ongelmia terveydelle että harmaita hiuksia globaalille yhteistyölle.

Tulevana viikonloppuna on jälleen aika siirrellä kellojen viisareita. Mutta miksi? Otetaanpa pieni askel taaksepäin kesäajan satavuotiseen historiaan.

Kesäajan perinne aloitettiin maailmansodan tiimellyksessä.

Vuonna 1916 resurssit oli tarpeen käyttää mahdollisimman tehokkaasti hyödyksi. Viisareiden vääntö "kohti kesää" nähtiin innovaationa, joka vähentäisi polttoaineen turhaa kulutusta: Valoisan ajan hyödyntäminen pienensi valaisutarvetta ja muutakin energiankäyttöä. Saksan keisarikunta ja Itävalta-Unkari olivat kaikkein ensimmäisiä, mutta liittoutuneet lähtivät pian mukaan kelloleikkiin.

Toisen maailmansodan aikana hiili haluttiin jälleen ruokkimaan sotakonetta ja kesäaika otettiin käyttöön entistä laajemmin. Suomessakin sitä kokeiltiin 1942, mutta vain yhden kesän ajan.

Kummankin maailmansodan jälkeen viisarien vääntelyn into hiipui, mutta kesäaika pysyi elossa. 1970-luvulla tapa alkoi viimein yleistyä, ja 80-luvun lopulla suosio saavutti huippunsa. Kesäaikaa on kokeiltu kaiken kaikkiaan 131 valtiossa. Puolet niistä käyttää sitä yhä.

Alla: Kesäaikaa on suosittu etenkin Euroopassa.

Kesäajan käyttöönottoa ehdotettiin jo ennen vuosisadan vaihdetta. Uusiseelantilainen George Hudson esitti Wellingtonin filosofiselle seuralle 1895 pitämässään puheessa, että kelloa voisi hyvinkin siirtää kaksi tuntia taaksepäin kesäisin. Hän oli huomannut kolmivuorotyössään, kuinka aamun valoisia tunteja kului turhaan hukkaan nukkuessa. Hudsonilla oli myös oma lehmä ojassa: kesäajan myötä innokas hyönteisten keräilijä saisi iltaisin enemmän valoisaa aikaa ötököiden tutkimukseen. Kesäaikaa testattiin Uudessa-Seelannissa käytännössä kuitenkin vasta 1927.

Suomeen kesäaika tuli pysyvästi vuonna 1981. Nykyisin sitä ylläpidetään EU-säännösten kautta.

Käytäntö

Matkustelevan tai kansainvälistä yhteistyötä tekevän on joskus haasteellista pysyä kesäaikakäytäntöjen kanssa ajan tasalla. Muutoksia tulee vuosittain jossain: kun yksi valtio lopettaa, toinen aloittaa ja kolmannessa liikutellaan aloitus- ja lopetuspäiviä. Ainoat vuodet, jolloin mitään kesäaikamuutoksia ei ole tehty, ovat olleet 1953 ja 2013.

EU:n alueella kesäaikaan siirtyminen hoituu yhdellä hujauksella, mutta muilla mailla on aivan omat systeeminsä. Erimerkiksi Pohjois-Amerikassa kesäaika kestää kummastakin päästä viikon tai pari meikäläistä pidempään.

Ainoat kuukaudet, jolloin jossain päin maailmaa ei vaihdeta kesäaikaan tai sieltä pois, ovat kesä-, heinä- ja joulukuu. Tänä vuonna. Ensi vuonna voi olla toisin.

Yllä: Kaikki alueet, jotka käyttävät kesäaikaa vuonna 2016. Aikavyöhykkeltä toiselle hyppäys tapahtuu eri maissa eri päivinä.
* Färsaaret, Irlanti, Iso-Britannia, Portugali, Marokko, Kanariansaaret.
** Ruotsi, Norja, Tanska, Alankomaat, Belgia, Luxembourg, Ranska, Saksa, Itävalta, Liechtenstein, Sveitsi, Puola, Tsekin tasavalta, Slovakia, Unkari, Kroatia, Kosovo, Slovenia, Serbia, Montenegro, Bosnia ja Herzegovina, Makedonia, Albania, Italia, Vatikaani, Monaco, San Marino, Andorra, Espanja, Gibraltar, Malta.
*** Suomi, Viro, Latvia, Liettua, Ukraina, Romania, Bulgaria, Moldova, Kreikka, Kypros, Israel, Libanon.

Isoissa maissa kaikki osavaltiot ja territoriot eivät yleensä kelloleikkiin edes ryhdy. Esimerkiksi Brasiliassa ainoastaan eteläiset osavaltiot vaihtavat aikaansa. Lähempänä päiväntasaajaa kesäajasta ei ole hyötyä, sillä auringon valomäärä ei juuri vaihtele vuoden mittaan. Kesäaika kannattaa, jos kannattaa, vain korkeammilla leveyspiireillä.

Marokossa kesäaika on käytössä, paitsi liukuvan Ramadan-kuukauden aikana. Ja kun kaikkialla muualla kelloja siirretään sunnuntaina (viikko vain vaihtelee), niin Grönlannissa ja Mongoliassa se tapahtuu lauantaina, Syyriassa ja Jordaniassa taas perjantaina. Ainoastaan Iranissa muutokselle on annettu selkeä päiväys, eikä viikonpäivällä ei ole väliä.

Suomeen vakiintunut käytäntö on periaatteessa yksinkertainen. Kelloa siirretään keväisin ja syksyisin tunti "kohti kesää" maaliskuun ja lokakuun viimeisinä sunnuntaina. Kun normaaliaikaa käyvä kello näyttäisi kahdeksaa, kesäajassa oleva näyttää jo yhdeksää. Käytännössä homma tarkoittaa että hyppäämme kesäksi Moskovan aikavyöhykkeelle.

Venäjällä ja monissa muissa entisen Neuvostoliiton maissa kesätouhusotkusta on luovuttu kokonaan. Toistaiseksi.

Mitä hyötyä?

Valoisan ajan mukana elämisessä ei ole mitään uutta. Kyse on ennemminkin siitä, että nykyihmisillä on vaikeuksia sovittaa elämänsä kulkemaan sekä kellon että auringon mukaan. Valoisan ajan hyötykäytökin täytyy siis aikatauluttaa.

Kesäajan alkuperäinen idea - energiansäästö - on nykyään kyseenalainen. Vain murto-osa energiasta kuluu valaistukseen. Saatava säästö on enimmilläänkin prosentti vuosikulutuksesta, ja senkin on huomattu kumoutuvan lisääntyneellä tarpeella lämmittää tai viilentää asumuksia.

Muitakin ongelmia on. Tietotekniset yhteydet ja logistiikka kärsivät vaihtelevista kellonajoista. Ostoksia tehdään valoisalla selvästi enemmän, mutta iltaisin suositummat viihdepalvelut kärsivät. Ja terveysvaikutuksiakin on. Itse siirtotapahtuma stresaa ja väsyttää, lisää itsemurha- ja sydäntautiriskejä, ja kasvattaa etenkin syksyllä liikenneonnettomuuksien määrää. Auringonvalon myötä lisääntynyt D-vitamiinituotanto on toki hyväksi, mutta mikään ei takaa että valoisa aika vietettäisiin ulkona.

Tutkimuksia löytyy suuntaan jos toiseenkin, mutta varmaa hyötyvaikutusta ei ole löydetty.

Kesäaika on nykyisessä globaalissa maailmassa reliikki, josta voitaisiin hyvin luopua. Se on pomppinut ihmisten kiusana vaihtelevin käytännöin jo 100 vuoden ajan.

Liukuvalla tai vuoden mittaan muuttuvalla työajalla hoidettaisiin sama asia paljon yksinkertaisemmin.

Otsikkokuva: MattysFlicks / Flickr
Kuvaajat: Jarmo Korteniemi

Maan ydin on yllättäen kuorta nuorempi

Tanskalainen tutkijaryhmä päätti ottaa mittaa urbaanista suhteellisuusteoreettisesta legendasta. Osoittautui, että kerrankin uskomus vähätteli todellista ilmiötä. Aikaero pinnan ja ytimen välillä on luultua suurempi.

Planeetan osaset, aina alkuaineista lähtien, ovat eri-ikäisiä. Molekyylejä ja mineraaleja hajoaa jo muodostuu koko ajan. Maan ydinkin on rakentunut yllättävän vastikään, kuten taannoin kirjoitimme. Mutta nuo kaikki ovat vain sivuseikkoja.

Tässä jutussa on kysymys jostain rakennuspalikkojakin perustavammasta: Painovoimasta ja aika-avaruuden vääristymistä.

Kuuluisan fyysikon, Richard Feynmanin, kerrotaan sanoneen luennollaan joskus 1960-luvulla jotakuinkin seuraavaa: "Gravitaatiopotentiaalin vuoksi Maan ytimen pitäisi olla päivän tai pari pintaa nuorempi".

Feynman tarkoitti sitä, että yleisen suhteellisuusteorian mukaan kellot käyvät sitä hitaammin, mitä suuremmassa gravitaatiokuopassa (eli painovoimapotentiaalissa) ne kulloinkin ovat. Tai siis näyttävät käyvän hitaammin muualta tiirailevan havaitsijan silmin. Omasta mielestään kukin kello käy toimii aivan normaalisti.

Maan ytimessä ollaan keskellä planeetan aiheuttamaa painovoimakuoppaa. Me pinnalla elelijät taas kekkaloimme kuopan rinteellä, mutta planeetta estää meitä tippumasta syvemmälle kuoppaan.

Päivän tai pari. Yksi tai kaksi päivää.

Suunnan voi todeta oikeaksi, jos tuntee jonkin verran suhteellisuusteoriaa. Lukuarvon suuruutta ei kuitenkaan tiettävästi ole aiemmin tarkistettu (tai ainakaan tarkistuslaskuja ei ole julkistettu). Lainausta on käytetty populaaritieteessä, luennoissa ja muuallakin. Luultavasti näin on käynyt Feynmanin tutkijan maineen vuoksi – anekdoottia käyttäneet ovat luottaneet siihen, että kuuluisuus teki laskunsa oikein.

Mutta kun ei tehnyt, ja väite menee päin prinkkalaa. Tämän huomaisi, jos asian tarkistaisi. Tämän todistamiseen liittyvistä laskuista selviäisi lukiofysiikalla tai viimeistään yliopiston fuksikurssien jälkeen.

Kyse on vuosista, ei päivistä.

Yllä Auringon ja Maan aiheuttamat aika-avaruuden vääristymät visualisoituna kaksiulotteisella verkolla.

 

Nyt tanskalaistutkijat laskivat, miten paljon gravitaatio todella hidastaa aikaa aivan lähiympäristössämme.

Maapallon pinnalla ja ytimellä on 2,5 vuoden ikäero. Se on kertynyt planeetan 4,5 miljardin vuoden eliniän aikana. Auringolla ero on isomman massan ja ytimen tiheyden aiheuttamasta kuopasta johtuen suurempi, peräti 39 000 vuotta.

Pinnalla oleva kello käy koko ajan nopeampaa kuin ytimeen upotettu kello. Erot kasvavat koko ajan.

Eron voisi määrittää mille tahansa kappaleelle, jonka massan jakautuminen ja läpimitta voidaan arvioida riittävän tarkasti.

Asia voidaan viedä ajatustasolla äärimmäisyyksiin. Keskelle mahdollisimman tyhjää avaruuden aluetta jätetty kello kävisi siis jokseenkin niin nopeasti kuin se tässä universumissa tiettävästi voisi. Todellisilla syrjäseudulla, kuten vaikkapa kaukana jättimäisistä galaksijoukoista, pimeästä aineesta ja jopa satunnaisista tähdistä, keskellä ei mitään, gravitaatiopotentiaali olisi minimissään. Toisessa ääripäässä olisivat ylitiheät neutronitähdet: Sellaisen ytimeen sijoitettu kello näyttäisi ulkopuoliselle tikittävän tuskallisen hitaasti. (Ajatusta jatkaen mustan aukon keskellä olevassa singulariteetissa aika jopa pysähtyisi – mutta jätetään sellaiset sikseen, muutoin mennään nykyfysiikan tuntemuksen ulkopuolelle.)

Asian todenperäisyydestä ei oikeastaan ole kiistaa. Yleiselle suhteellisuusteorialle ei vielä ole löytynyt haastajaa, joka selittäisi maailman toimintaa yhtä hyvin ja lisäksi vielä selittäisi aiemmassa teoriassa esiintyvät puutteetkin.

Periaatteessa lasketun ikäeron voisi kuitenkin tarkistaa analysoimalla radioaktiivisten aineiden ja niiden hajoamistuotteiden suhteita eri syvyyksillä. Mitä syvemmällä gravitaatiokuopassa aine on, eli mitä hitaammin kellon aika on kulkenut, sitä pienempi osa emoaineesta on ehtinyt hajota. Ytimessä pitäisi siis olla radioaktiivista ainetta hieman suurempi prosenttiosuus jäljellä, sillä radioaktiivinen puoliintumisaika on vakio ajan suhteen. Ikäero on kuitenkin hyvin marginaalinen atomien elinikään nähden, ja puoliintumisaikakin on tilastollinen suure, joten tulokset hukkuisivat auttamatta taustakohinaan. Ja onhan näytteen saaminen planeetan ytimestäkin myös himpun verran vaikeaa.

Feynmanin sanomiset olivatkin palturia

Tanskalaistutkijat julkaisivat laskunsa, jotta muut tieteentekijät, opettajat ja oppilaat muistaisivat, kuinka helppoa auktoriteettiin on luottaa turhaan ja kuinka helposti myös kuuluisuudet tekevät virheitä. Tutkijat yrittävät nostaa kollegojensa terveen skeptisyyden ja tieteellisen selkärangan esiin. Mitään väitettä ei kannata sokeasti uskoa, jos sen voi itse tarkistaa. Auktoriteettiusko ei kuulu tieteen ihanteisiin. Päinvastoin.

Varmaa tosin ei ole, oliko virhe todella Feynmanin vai kenties luennon puhtaaksikirjoittajan tekemä. Tätä ei enää voida tarkistaa. Yhtä kaikki, Feynmanin suuhun on pistetty päiviä vuosien sijasta, ja siellä ne pysyvät.

Feynman itse tokaisi huomattuaan jonkun muun kuuluisuuden tekemät virheet: "Siitä lähtien en ole juuri 'asiantuntijoista' piitannut vaan laskenut kaiken itse."

Tutkijoiden laskuharjoitusmainen artikkeli ilmestyi juuri European Journal of Physics -lehdessä, jonka tarkoituksena on parantaa fysiikan tuntemusta ja käyttötottumuksia korkeakoulutuksessa. Asiasta kirjoittivat aiemmin NewScientist ja ScienceAlert.