Lääketieteen Nobel 2018 meni syöpähoitotutkijoille

Ma, 10/01/2018 - 13:19 By Toimitus
Tasuku Honjo työryhmänsä kanssa

Tällä viikolla jaetaan jälleen Nobel-kunniaa – ja tulee myös kovasti pettymyksiä, kun palkinnotta jääneet harmittelevat kohtaloaan. Perinteiseen tapaan ensimmäinen palkinnoista meni lääketieteeseen: sen saavat jaetusti amerikkalainen James P. Allison ja japanilainen Tasuku Honjo “löydöistään syövän hoitamisessa immuunipuolustuksen negatiivisen säätelyn avulla".

Palkinnosta päättävän Nobel-lautakunnan mukaan kaksikko on tehnyt uraa uurtavaa työtä taistelussa syöpää vastaan. Heidän työnsä liittyy siihen, miten elimistön oma immuunipuolustusjärjestelmä saadaan hyökkäämään syöpäsoluja vastaan siten.

Lautakunta vertaa löytöä siihen, että immuunisysteemin jarrut voidaan vapauttaa hyökkäämään syöpää vastaan.

James P. Allison on tutkinut proteiinia, joka toimii tällaisena immuunisysteemin jarruna. Hän huomasi miten proteiini saadaan toimimaan siten, että immuunijärjestelmää voidaan käyttää apuna toimivassa syöpähoidossa. Allison toimii Houstonissa olevassa Texasin yliopiston MD Andersonin syöpätutkimuskeskuksessa.

Otsikkokuvassa työryhmänsä kanssa Kioton yliopistossa juhliva Tasuku Honjo on tehnyt samanlaista työtä immuunisuojasolujen proteiinin kanssa, mutta hänen menetelmässään "jarru vapautetaan" hieman eri tavalla. Hänenkin kehittämänsä syöpähoito on osoittautunut hyvin tehokkaaksi.

Lisätietoja palkintoperusteista ja voittajien työstä on Nobel-säätiön tiedotteessa.

Nobel-palkintojen julkistusviikko jatkuu siten, että huomenna tiistaina on vuorossa fysiikan palkinto. Keskiviikkona kerrotaan kemian palkinnon saaja tai saajat, ja perjantaina mennään Osloon, missä ilmoitetaan rauhanpalkinnon saaja. Taloustieteen palkinnosta ilmoitetaan puolestaan ensi viikon maanantaina.

Kirjallisuuden palkintoa ei tänä vuonna jaeta lainkaan – tai siis virallisesti palkinnon antamista on "lykätty toistaiseksi".

Otsikkokuva: Nobel-säätiön twitter-tili.

Virtanen sai bakteerin

Pe, 08/31/2018 - 22:44 By Toimitus
Virtasen bakteeri

Tämä on skandaali: A. I. Virtanen jäi aikanaan ilman hänen mukaansa nimettyä bakteeria. Nyt tämä epäkohta korjataan, sillä Helsingin yliopiston maatalous-metsätieteellisen tiedekunnan tutkijat kunnioittavat nobelistiamme nimeämällä löytämänsä bakteerin Acidipropionibacterium virtaneniiksi.

Artturi Ilmari Virtanen (1895–1973) tunnetaan parhaiten maitohappokäymiseen perustuvasta rehun säilömismenetelmästä, josta hän sai kemian Nobelin palkinnon vuonna 1945.

Virtasen propionihappobakteereita koskeva tutkimus on sen sijaan vähemmän tunnettua. Propionihappobakteereihin kuuluu useita merkittäviä lajeja, jotka esimerkiksi valmistavat B12-vitamiinia, ovat mukana aknen synnyssä tai tuottavat propionihappoa teollisuusmittakaavassa.

Propionihappobakteereita onnistuttiin eristämään ja kuvaamaan tieteelle jo 1900-luvun alussa. 1920-luvun alussa A. I. Virtanen tutki suomalaisesta emmentaljuustosta eristämiään propionihappobakteerikantoja, mutta vasta hollantilainen Cornelius Bernadus van Niel loi väitöskirjassaan 1928 propionihappobakteerien systemaattisen luokittelun ja nimistön.

van Niel nimesi bakteerilajeja ensimmäisten propionihappobakteeritutkijoiden kunniaksi. Esimerkiksi B12-vitamiinia tuottava, sveitsiläisjuustoille tyypillinen Propionibacterium freudenreichii sai nimensä Eduard von Freudenreichiltä, myös juustoissa esiintyvä Propionibacterium jensenii puolestaan Sigurd Orla-Jenseniltä ja Acidipropionibacterium thoenii J. Thöniltä.

Virtanen ei kuitenkaan saanut omaa bakteeria, koska hän itsekin uskoi, että hänen eristämänsä kannat kuuluivat jo Thönin mukaan nimettyyn lajiin.

Helsingin yliopistossa on tutkittu erilaisista ympäristöistä eristettyjä propionihappobakteerikantoja ja selvitetty niiden perimän emäsjärjestystä. Suomalaisesta mallastetusta ohrasta eristetyn kannan haaraiset soluketjut ja niiden agar-maljalla kasvaessaan tuottama pigmentti olivat samankaltaisia kuin Virtasen kuvaamilla kannoilla. Kanta myös erosi perimältään riittävästi Acidipropionibacterium thoenii -lajista ja sen tunnetuista sukulaisista muodostaakseen kokonaan uuden lajin.

Tutkijat päättivätkin nimetä lajin Virtasen mukaan.

"Meillä ei tietenkään ole mahdollisuutta tietää varmuudella, onko nyt eristetty uusi laji juuri A. I. Virtasen kuvaama", sanoo Paulina Deptula maatalous-metsätieteellisestä tiedekunnasta. "Päätimme kuitenkin antaa löytämällemme lajille Virtasen uraauurtavan tutkimuksen kunniaksi Acidipropionibacterium virtanenii -nimen,

*

Juttu on Helsingin yliopiston tiedote.

Hyvää lisätietoa A.I.Virtasesta on tässä Valion tekemässä videossa:

CERN-tutkimuskeskuksessa kiihdytettiin kokonaisia atomeita – tulevaisuudessa siintää "gammasädetehdas"

Ti, 07/31/2018 - 11:01 By Jari Mäkinen
CERNin LHC-kiihdytin, jonka etuosan sisusta on otettu näkyviin

Euroopan hiukkastutkimuskeskuksessa CERNissä pohditaan erilaisia uusia tapoja tuottaa hiuikkastörmäyksiä, jotka kertovat aineen perusolemuksesta. Yksi tällainen on "gammasädetehdas", joka vaatisi sen, että suuressa LHC-hiukkaskiihdyttimessä pyöritettäisiin protonien sijaan atomeita.

Geneven luona oleva CERN:in 27 kilometriä halkaisijaltaan oleva suuri LHC-hiukkaskiihdytin toimii normaalisti siten, että siihen ohjataan pienemmistä kiihdyttimistä protoneita sisältäviä hiukkassuihkuja, jotka laitetaan pyörimään kiihdyttimen sisällä päinvastaisiin suuntiin ja lopulta ohjataan törmäämään toisiinsa.

Tyypillisesti ennen talven huoltotaukoa protonien sijaan kiihdytetään myös atomiytimiä, jolloin saadaan aikaan erilaisia törmäyksiä.

Aina silloin tällöin kiihdyttimellä tehdään myös erilaisia kokeiluita, kuten viime keskiviikkona, 25. heinäkuuta. Silloin LHC pyöritti ensimmäistä kertaa atomeita.

Atomeissa on ydin ja sitä kiertäviä elektroneja. Ytimessä on puolestaan yleensä protoneita ja neutroneita. Elektronit ovat sähkövaraukseltaan negatiivisia ja protonit positiivisia, ja neutronit puolestaan nimensä mukaisesti neutraaleita.

Koska LHC on viritetty toimimaan protoneilla, piti käytettyjen atomiydintenkin olla varaukseltaan positiivisia, joten niissä oli tavallista vähemmän elektroneja. Itse asiassa aika paljon vähemmän, sillä atomeina kokeessa käytettiin lyijyatomeita, joissa oli vain yksi ainoa elektroni.

Ongelmana on LHC:n säätämisen lisäksi se, että lyijy menettää ainokaisen elektroninsa hyvin helposti, jolloin kiihdyttimen tarkasti hiukkasten kanssa synkronoidut magneetit eivät saa siitä enää otetta, vaan atomi törmää kiihdyttimen pienen tyhjiöputken seinään.

Ensimmäisessä kokeessa kiihdyttimeen ohjattiin 24 atomeista koostunutta rypästä ja niitä pyöritettiin hyvin hitaasti suuressa kiihdytinrenkaassa noin tunnin ajan. Sitten tehoa lisättiin ja atomien nopeus kasvoi. Atomeita onnistuttiin pitämään noin kaksi minuuttia kiihdyttimessä, ennen kuin ne ohjautuivat siitä pois. Kiihdytin on tehty siten, että kun hiukkassuihku – tai atomisuihku – ei ole stabiili, se ohjataan pois kohtioon, mihin atomit törmäävät turvallisesti jälkiä jättämättä.

Sen jälkeen LHC resetoitiin ja sen sisälle ohjattiin vain kuusi atomirypästä. Niiden kanssa kaikki toimi paremmin, ja suihku onnistuttiin pitämään kahden tunnin ajan pyörimässä kiihdyttimessä suurella teholla, ennen kuin se tarkoituksella ohjattiin ulos renkaasta.

Tutkijat ennustivat, että teoreettisesti LHC voisi pitää tällaisen omituisen hiukkassuihkun sisällään 15 tunnin ajan, mutta nyt tehdyn kokeen perusteella se voisikin toimia jopa 40 tunnin ajan.

Koe liittyy CERN:in uusien, mahdollisten koelaitteiden testaamisohjelmaan, missä eräs mahdollisista tulevaisuuden laitteista on niin sanottu gammatehdas.

Gammatehtaassa (englanniksi Gamma Factory) kiihdyttimessä kiertävään suurienergiseen atomisuihkuun ammutaan laservaloa, jolloin atomien elektronit hyppäävät korkeammalle energiatasolle ja palaavat sitten sieltä takaisin. Normaalisti energiatasolta alemmalle putoava elektroni vapauttaa tavallista valoa, mutta kun atomit liikkuvat kiihdyttimessä hyvin lähellä valon nopeutta, olisi syntyvä valo hyvin lyhytaallonpituuksista, eli osuisi gamma-aaltojen alueelle.

Gammasäteet puolestaan olisivat niin voimakkaita, että ne voisivat tuottaa tavallisen aineen hiukkasia, mutta myös raskaampia alkeishiukkasia sekä mahdollisesti eksoottisia aineen muotoja, kuten omituista pimeää ainetta.

Tuloksena voisi olla myös myonisäteitä, aivan uudenlainen hiukkassuihku, jonka käyttäminen avaisi uusia mahdollisuuksia hiukkastutkimuksessa. Myonit ovat epävakaita hiukkasia, jotka ovat hieman kuten elektroneja, paitsi että niiden massa on 207-kertainen elektronin massaan verrattuna. Siitä tekee kiinnostavan hiukkastutkimuksen kannalta paitsi sen korkea massa, niin myös se, ettei sillä ole sisäistä rakennetta – törmäystulokset ovat siis yksiselitteisempiä, kuin esimerkiksi LHC:n nyt käyttämillä protoneilla, jotka koostuvat kolmesta kvarkista.

Matkaa näihin uudenlaisiin kiihdyttimiin on vielä paljon, mutta nyt tehty koe antaa toivoa siitä, että sellaisia voidaan joskus vielä tehdä.

Seuraavaksi LHC:n "valovoimaa" lisätään

LHC-kiihdyttimen tehoa on lisätty sen toiminta-aikana jo useaan kertaan, ja lähivuosina sitä parannellaan myös useilla eri tavoilla. Yksi tempuista on lisätä kiihdyttimeen laitteet, joiden avulla törmäyksien määrää saadaan lisättyä.

Nyt hiukkassuihkut osuvat toisiinsa koelaitteiden keskellä yhdessä kohdassa, mutta tavoitteena on saada törmäyskohtaa levennettyä. Silloin toisiinsa osuvat hiukkassuihkut – joissa on paljon protoneita molemmissa – osuvat laajemmalla alueella toisiinsa, jolloin suurempi osa niiden hiukkasista osuu toisiinsa. Nyt suurin osa hiukkasista menee ohi.

"Suuri kirkkaus", eli High luminocity, viittaakin juuri tähän suurempaan törmäysmäärään; törmäyskohdat ikään kuin loistavat paremmin.

Alla oleva CERN:in video selittää, miten LHC:n virittäminen tapahtuu.

Euroopan tiede vyöryy Toulouseen

Ti, 07/10/2018 - 13:14 By Jari Mäkinen
Capitol Toulousessa

Eteläisessä Ranskassa sijaitseva Toulouse on tällä viikolla eurooppalaisten tiedepiirien keskipisteessä. Sen valtaa joka toinen vuosi pidettävä ESOF, EuroScience Open Forum, eli eurotieteen avoin foorumi. Luvasssa on paljon EU-henkistä puhetta ja tärkeiltä vaikuttavia Brysselin edustajia, mutta myös roppakaupalla kiinnostavia esityksiä, tieteen ja tutkimuksen helmiä ennen kaikkea Euroopasta sekä koko kaupunkiin levittäytyvä tiedejuhla.

Euroopan unionia voi syyttää aiheestakin paljosta turhasta byrokratiasta, pönötyksestä ja tuhlailustakin, mutta se on myös todella merkittävä tieteen ja tutkimuksen rahoittaja sekä edistäjä. Horizon 2020, tällä hetkellä vielä meneillään oleva tiederahoitushimmeli, käyttää 70 miljardia euroa tutkimukseen (mikä oli 23 % enemmän kuin aiempi budjetti), ja seuraava rahoituspaketti vuosiksi 2021-2027 on luokkaa 100 miljardia euroa. Tämä summa on toistaiseksi vielä ehdotus, mutta yleinen tahto tuntuu olevan ehdotuksen kannalla ja todennäköisesti summa on tuota luokkaa.

Kun kaikki tieteeseen ja tekniikkaan liittyvät rahoitukset lasketaan yhteen, noussee summa 160 miljardiin euroon.

Virallisesti EU ei ole kuitenkaan ESOFin järjestäjä, vaan homman hoitaa järjestö nimeltä EuroScience. Kyseessä on Strasbourgissa majaansa pitävä, käytännössä EU:n suojissa toimiva eurooppalaisten tutkijoiden ja tutkijayhteisön järjestö. Sen tärkein toimintamuoto ovat juuri ESOF-tapahtumat.

ESOF on eräs maailman suurimmista koko tieteen kentän kattavista festivaaleista ja selvästi suurin Euroopasssa. Sen pohjana ovat EU-rahoitteisen tutkimushankkeet, mutta onneksi se esittelee aiheita myös paljon laajemmin. Ohelmassa olevien aiheiden kirjo on todella laaja ja luonnollisesti mukana on myös innovaatiopolitiikkaa, poliittista päätäntää yleisesti sekä liike-elämää.

Paikalla on ilmoittautumisten mukaan yli 4000 osanottajaa yli 80 maasta ja tämän viikon aikana pidetään yli 150 esitystä, työpajaa tai tieteellistä seminaaria.

Vaikka painopiste onkin Euroopassa, on tapahtumassa paitsi osanottajien joukossa, niin myös etenkin näyttelyssä väriä muualtakin. Esimerkiksi Etelä-Afrikka ja Korea ovat näyttävästi mukana. Näyttelyssä on myös mukana mm. Viro, mutta Suomi – jälleen kerran – on näkymätön.

Erittäin olennainen osa ESOFia on kaupunkijuhla. Tiede on näkyvissä kaikkialla Toulousessa, sillä kaupungissa on kolmattasataa erilaista tapahtumaa, joihin odotetaan yli 35 000 kävijää.

ESOFin avajaiset

ESOF 2018:n avajaiset kokosivat lavalle politikkojen lisäksi vaikuttavan joukon tutkijoita ja tieteeseen jotenkin liittyviä julkisuuden henkilöitä.

ESOF on mainio konsepti, joka alkoi Tukholmasta vuonna 2004. Sen jälkeen tapahtuma on ollut Münchenissä, Barcelonassa, Torinossa, Dublinissa, Kööpenhaminassa ja Manchesterissa, kunnes nyt on vuorossa Toulouse. Tapahtuman järjestäminen tuo mukanaan "eurooppalaisn tiedekaupungin" tittelin.

Seuraava ESOF pidetään kahden vuoden päästä Italiassa, Triestessä, ja sitten Alankomaissa, Leidenissä. Toivottavasti joskus Helsinki – tai jokin muu suomalainen kaupunki – liittyisi joukkoon.

Tiedetuubi on tällä viikolla paikalla Toulousessa ja välittää tunnelmia tapahtumasta sekä sen yhtydessä olevista kiinnostavista tutustumismatkoista paikallisiin tutkimuslaitoksiin – joita toki olemme esitelleet aika paljon aikaisemminkin, koska Toulouse on ilmailun ja avaruuden suurkaupunki.

Millä kannattaa kulkea pääkaupunkiseudulla: met­rol­la, au­tol­la vai kau­pun­ki­pyö­räl­lä?

Pe, 06/29/2018 - 08:08 By Toimitus
Liikennettä Helsingissä. Kuvat: Lauri Koponen ja Atte Koskimaa (flickr)

Suuret muutokset kaupunkirakenteessa ja liikennejärjestelmässä pääkaupunkiseudulla ovat saaneet aikaan sen, että eri paikkojen saavutettavuus on voimakkaassa muutoksessa. Uusi avoin ai­neis­to pal­jas­taa muu­tok­set jaa geoinformatiikka voi näyttää nopeimmat sekä kätevimmät tavat liikkua.

"Pääkaupunkiseudulla on valmistunut viimeisimpien vuosien aikana suuria liikennehankkeit", toteaa apulaisprofessori Tuuli Toivonen Helsingin yliopistosta.

"Kehärata aukesi kesällä 2015 ja Länsi-metro syksyllä 2017. Näiden lisäksi pyöräilyyn on panostettu paljon, ja Helsingissä ja Espoossa on otettu käyttöön kaupunkipyöräjärjestelmä. Myös pyöräilyinfrastruktuurin kehittämiseen on panostettu."

"Uudet tutkimuksemme paljastavat, kuinka nämä muutokset ovat vaikuttaneet matka-aikoihin eri kulkutavoilla paikkojen välillä", hän sanoo.

Toivonen vetää monitieteistä Kaupunkitutkimusinstituuttia, eli Digital Geography Labia Helsingin yliopistossa. Hän oli mukana Tiedetuubin Suorana labrasta twitterhankkeessa viime maaliskuussa ja kertoi viesteissään mm. miten sosiaalista mediaa ja matkapuhelinaineistoja louhimalla päästään aivan uudella tavalla tuottamaan uutta tietoa kestävien kaupunki- ja luonnonympäristöjen suunnitteluun.

Nyt julkistettu tuorein pääkaupunkiseudun matka-aikamatriisi perustuu yhdeksän vuoden aikana tehtyihin havaintoihin pääkaupunkiseudun saavutettavuudesta ja sen muutoksista. Vastaava on julkaistu aiemmin vuosina 2013 ja 2015.

Tutkimusryhmässä on kehitetty laskennallisia työkaluja saavutettavuuden arviointiin, ja matriisin aineisto kattaa tärkeimmät kulkutavat (auto, joukkoliikenne, pyörä, kävely) kahtena eri ajankohtana (aamuruuhka, keskipäivä). Työkalujen ja aineistojen avulla matka-aikoja eri kulkumuodoilla ja ajankohtina voidaan tarkastella vertailukelpoisesti alueellisessa mittakaavassa.

Laskentojen tekeminen ei olisi mahdollista ilman lukuisia tietoaineistoja. Suurin osa näistä on saatavilla täysin avoimesti, kiitos Suomen ja pääkaupunkiseudun kuntien avoimen datapolitiikan.

"Aikasarjojen tekemiseen tarvitaan saavutettavuustyökalujamme, mutta myös muita tietoaineistoja", kertoo Henrikki Tenkanen, joka on ollut vastuussa massiivisten laskentojen tekemisestä.

"Nämä koostuvat joukkoliikenneaikatauluista, autoilun nopeuksia sisältävistä GPS-mittauksista sekä tie- ja joukkoliikenneverkostosta. Pyöräilytietoa on saatu Strava-urheilusovelluksesta ja Helsingin kaupunkipyöräjärjestelmästä."

Tutkimuksesta julkaistiin juuri myös artikkeli Applied Geography -lehdessä: Dynamic Cities: Location-based accessibility modelling as a function of time.

Liikennettä pääkaupunkiseudulla

Pää­kau­pun­ki­seu­dun saa­vu­tet­ta­vuus­ra­ken­teet elä­vät jat­ku­vas­ti

Saavutettavuuden keskeisyysvertailut paljastavat kiinnostavia asioita saavutettavuuden rakenteista eri kulkutavoilla liikkuvien kannalta. Joukkoliikenteellä parhaiten saavutettavat alueet sijoittuvat keskustan tuntumaan. Viime vuosien joukkoliikenteen suuret hankkeet, kuten bussien poikittaislinjat ja kehärata, ovat siirtäneet joukkoliikenteen parhaan saavutettavuuden aluetta hieman aiempaa pohjoisemmaksi. Länsimetrolla on lopulta ollut vähän vaikutusta Lauttasaarta ja Otaniemeä lukuun ottamatta. Ne ovat nousseet keskeisimpien alueiden joukkoon aiempiin vertailuvuosiin nähden.

Autoilijan näkökulmasta keskeisimmät alueet ovat keskittyneet nopeiden kehäteiden varsille. Vertailu viiden vuoden takaiseen tilanteeseen osoittaa, että saavutettavuudeltaan parhaat alueet ovat siirtyneet pohjoisemmaksi. Tämä selittyy Helsingin päätöksellä laskea nopeusrajoituksia järjestelmällisesti erityisesti asuinalueilla sijaitsevien teiden osalta.

"Pyörän parhaiten saavutettavat alueet sijaitsevat pääkaupunkiseudun pyöräilyverkoston keskiosissa, koska pyöräilyä järjestelmällisesti hidastavia tekijöitä on vähän Helsingin keskusta-aluetta lukuun ottamatta", kertoo kaupunkipyöristä pro gradu -työtään viimeistelevä Elias Willberg.

Laaja pääkaupunkiseudun saavutettavuuden muutoksia kuvaava esitys on katsottavissa täältä.

Pyö­rä on kil­pai­lu­ky­kyi­nen kul­ku­vä­li­ne

Kulkutapavertailut paljastavat, että pyörä on erittäin kilpailukykyinen kulkuväline pääkaupunkiseudulla. Pyöräilyä tarkasteltiin nopean (keskinopeus 19 kmh) ja hitaan (keskinopeus 12 kmh) pyöräilijän näkökulmasta. Matka-ajassa mitattuna nopea pyöräilijä saavuttaa esimerkiksi rautatieaseman joukkoliikennettä nopeammin suurimmasta osaa kaupunkia lukuun ottamatta alueita, jotka ovat raideliikenneyhteyksien läheisyydessä.

Pyöräilyssä ei kuitenkaan otettu väsymysefektiä huomioon, joten vertailut pitkien matkojen takaa kuvastavatkin enemmänkin tilannetta, jossa käyttäjällä on sähköpyörä käytössään. Se mahdollistaa tasaisen nopeuden pitkienkin matkojen päähän", toteaa Henrikki Tenkanen.

Tiedot hitaasta pyöräilijästä, jonka keskinopeudet perustuvat kaupunkipyöräjärjestelmästä kerättyyn aineistoon, osoittavat, että pyörä on rautatieasemalle kulkiessa joukkoliikennettä nopeampi, tai yhtä nopea, suurin piirtein sillä alueella, johon kaupunkipyöräjärjestelmän kattavuus tällä hetkellä ulottuu.

Julkisen liikenteen ja autoilun vertailu taas paljastaa, että autoilu on pääosin joukkoliikennettä nopeampi kulkutapa kaikkina kolmena vertailuvuonna, 2013, 2015 ja 2018. Joukkoliikenne on autoilua nopeampi erityisesti raideliikenteen läheisyydessä. Metro- ja juna-asemat erottuvat aineisosta selkeästi, ja niiden läheisyydestä Helsingin päärautatieaseman saavuttaa autoa nopeammin.

Ai­neis­tot ja me­ne­tel­mät hyö­ty­käy­tös­sä

Tutkimusryhmän avoimet saavutettavuusaineistot sekä menetelmät ovat olleet aktiivisesti käytössä niin kaupunkisuunnittelussa kuin yritystoiminnassa.

"Menetelmien avoin julkaiseminen on yhä tavallisempaa, sillä muiden muassa yritykset ovat huomanneet avoimuudesta olevan enemmän hyötyä kuin haittaa liiketoiminnalle", selittää tutkimusryhmässä pro graduaan tekevä ja uusia saavutettavuustyökaluja kehittänyt Jeison Londoño.

Helsingin ja Espoon kaupunkisuunnittelijat ovat käyttäneet työkaluja aktiivisesti uusien liikenneinvestointien vaikutusten arviointiin, ja aineistot on liitetty myös osaksi kaupunkien asukkailleen tarjoamia verkkopohjaisia karttapalveluita. Myös pääkaupunkiseudulla toimivat yritykset ovat käyttäneet aineistoa aktiivisesti kauppapaikkojen suunnittelun tukena.

Avoimiin saavutettavuusaineistoihin sekä menetelmiin kohdistuva kysyntä on innoittanut yliopiston Digital Geography Labin nuoria tutkijoita myös liiketoimintaan.

"Perustamamme Mapple keskittyy saavutettavuuteen ja liikkumiseen liittyvien analytiikkapalvelujen sekä rajapintojen tarjoamiseen eri toimijoille. Jännittävä nähdä, kuinka pitkälle avoimuudella pääsee yritysmaailmassa", pohtii Tenkanen, joka on yksi yrityksen perustajajäsenistä.

Pääkaupunkiseudun saavutettavuutta voi tarkastella eri vuosina kätevästi interaktiiviselta Mapplen tarjoamalta kartalta.

*

Juttu on lähes sellaisenaan Helsingin yliopiston lähettämä tiedote.

Kuvat (via flickr): Atte Koskimaa (vas.) ja Lauri Koponen (oik.).

Mikä kelluu Kitisen joella?

La, 06/16/2018 - 10:31 By Toimitus

Joet ovat järvien lailla hiilidioksidin ja metaanin lähteitä, mutta mitkä tekijät vaikuttavat kasvihuonekaasujen vaihtoon veden ja ilmakehän välillä? Sitä tutkitaan nyt suurella mittauskampanjalla Sodankylässä.

Jos näet Lapissa, Sodankylässä Kitisen joeklla jotain kummallista kellumassa ja ulkopuolisen näköisiä hiippareita sen ympärillä, ei kannata säikähtää. Ne ovat vain tutkijoita, jotka ovat tulleet tekemään mittauksia.

Helsingin yliopiston Ilmakehätieteiden keskus INAR on nimittäin aloittanut Ilmatieteen laitoksen kanssa syyskuun loppuun kestävän laajan jokimittauskampanjan Kitisen joella.

Kampanjan taustalla on tieto siitä, että järvien tavoin joet ovat yleensä kasvihuonekaasujen, etenkin hiilidioksidin ja metaanin, lähteitä. Mekanismeja jokien kaasunvaihdon takana ei kuitenkaan vielä täysin ymmärretä, minkä vuoksi tarkkaa tietoa tämän kasvihuonekaasulähteen globaalista merkityksestä ei ole.

"Kitinen oli luonnollinen valinta mittauspaikaksi, koska pohjoisten ekosysteemien tutkimuksen merkitys on kasvamassa", sanoo kampanjaa johtava akatemiaprofessori Timo Vesala Helsingin yliopistosta.

"Joki on kooltaan riittävän suuri, niin että paikalle saattoi rakentaa mittauslautan. Ja vieressä olevat Sodankylän geofysiikan observatorio ja Ilmatieteen laitoksen yksikkö tarjoavat hyvät puitteet niin mittauksille kuin tutkijoillekin", jatkaa väitöskirjaansa tähän tutkimukseen liittyen valmisteleva Kukka-Maaria Erkkilä niin ikään Helsingin yliopistosta.

Ki­tinen on hyvä mallijoki

Kampanjassa tarkkaillaan kasvihuonekaasujen pitoisuuksia ilmassa ja vedessä, veden virtausta ja turbulenssia sekä veden lämpötilaa eri syvyyksillä.

Kampanjan avulla pyritään ymmärtämään biologisia, fysikaalisia ja meteorologisia tekijöitä, jotka vaikuttavat kaasujen vaihtoon veden ja ilmakehän välillä. Tätä tietoa voidaan hyödyntää globaaleissa hiilenkierto- ja ilmastomalleissa. Kitisen mittaukset tukevat myös eurooppalaisen kasvihuonekaasujen seurantajärjestelmän ICOS:n työn kehittämistä, sillä vesistöt ovat siinä aliedustettuina.

Mittauskampanja on globaalisti harvinainen ja vaatii kotimaisten partnerien lisäksi laajaa kansainvälistä yhteistyötä; mukana on tutkijoita myös Itä-Suomen yliopistosta, Saksasta German Research Centre for Geosciences -tutkimuslaitoksesta Potsdamista ja Koblenz-Landaun yliopistosta, Ruotsista Lundin, Linköpingin ja Uppsalan yliopistoista, Yhdysvalloista Kalifornian yliopistosta Santa Barbarasta, Venäjältä Moskovan yliopistosta sekä Iso-Britanniasta Southamptonin yliopistosta.

Tulokset kampanjasta tulevat kansainväliseen ja kotimaiseen käyttöön loppuvuodesta 2018.

*

Juttu perustuu Helsingin yliopiston tiedotteeseen. Otsikkokuva: Kukka-Maaria Erkkilä.

Saksalainen mittaustötterökone kävi nuuskimassa Suomen ilmaa

Pe, 06/08/2018 - 10:40 By Jari Mäkinen
HALO-lentokoneen mittauspuomi

Saksan Ilmailu- ja avaruuskeskuksen HALO-tutkimuslentokone lensi Suomen yllä 28. toukokuuta 2018 ja teki mm. hiilidioksidin ja metaanin mitauksia ensimmäistä kertaa Suomessa korkealle stratosfääriin asti.

Ilmakehässä olevia kasvihuonekaasuja mitataan monella eri tavalla. Yleisin on rutiininomaiset havainnot Maan pinnalta, mutta kaasuja kartoitetaan myös avaruudesta satelliiteilla. Näin niiden esiintymisestä saadaan nopeasti hyvin kattava kuva joka puolelta maapalloa.

Lisäksi kaasuja mitataan eri puolilla maapalloa lentokoneista ja ilmapalloista. Toisinaan nämä ilmassa ja avaruudessa tehtävät havainnot tehdään tarkoituksella samanaikaisesti, jotta satelliittihavaintojen laatua voidaan tarkkailla ja mittaustekniikkaa säätää mahdollisimman hyväksi.

Nyt toukokuun lopussa Suomessa tehdyt tutkimuslennot liittyivät kansainväliseen CoMet-mittauskampanjaan (Carbon Dioxide and Methane Mission).

Mittaukset tehtiin Saksan Ilmailu- ja avaruuskeskuksen HALO-tutkimuslentokoneella, joka on Gulfstream G 550 -liikesuihkukoneesta muokattu lentävä laboratorio. Nimi HALO tulee sanoista High Altitude and Long Range Research Aircraft, eli kone pystyy lentämään korkealla ja pitkään.

Suomen mittauslennoilla koneella noustiinkin noin 15 kilometrin korkeuteen, kun tyypillisesti täällä tehdyillä mittauslennoilla on oltu "vain" noin kahdeksassa kilometrissä.

Koska kone pystyy lentämään hyvin pitkiä lentoja, teki se lentonsa 28. toukokuuta Saksasta, Münchenistä, missä koneen sijoituspaikka on. Otsikkokuvassa kone on lentämässä Münchenin kuuluisan Allianz-areenan päällä ja sen nokasta eteenpäin sojottava mittauspuomi näkyy hyvin.

Kone lensi 8,5 tuntia ja kävi lennollaan Pohjois-Suomen yllä, missä se kävi tekemässä mittauksia eri korkeuksilla.

Lennon aikana mitattiin kahden tärkeimmän kasvihuonekaasun, hiilidioksidin ja metaanin, pitoisuuksia ilmakehän eri korkeuksilla uusia menetelmiä kokeillen. Erityisesti stratosfäärissä kasvihuonekaasujen pitoisuudet tunnetaan huonosti, ja mittauksia on haastavaa tehdä muilla tavoin.

Tämä erikoisvarusteltu liikesuihkukone on sisustukseltaan hieman askeettisempi kuin raharikkaiden bisnesjetit.

Ilmatieteen laitoksella Sodankylässä suoritettiin samaan aikaan useita eri tyyppisiä mittauksia: kasvihuonekaasujen pitoisuutta tutkittiin kaukomittauksin sekä säähavaintopallon avulla stratosfääriin nostetulla AirCore-keräysjärjestelmällä.

Tutkimuslennoilla saatiin uutta tietoa kasvihuonekaasujen jakaumasta ja vaihtelusta ilmakehän eri korkeuksilla Lapin päällä. Tulokset ovat tärkeitä metaanin ja hiilidioksidin lähteiden ja nielujen tutkimuksessa, jotta voidaan entistä paremmin ennakoida tulevaisuuden ilmastonmuutosta ja sen vaikutuksia.

Samaan aikaan tehtiin myös mittauksia avaruudesta Nasan OCO-2 -satelliitilla sekä Japanin avaruusjärjestön GOSAT-satelliitilla. Näin niiden kaukaa tekemiä havaintoja voidaan verrata tarkkoihin paikan päällä ilmakehässä tehtyihin mittauksiin, mikä auttaa varmistamaan satelliittihavaintojen laatua.

Mittauksia käytetään OCO-2:n ja GOSAT:in havaintojen kvalifioinnin lisäksi myös Euroopan avaruusjärjestön Sentinel-5P -satelliitissa olevan TROPOMI-havaintolaitteen sekä kiinalaisen TanSatin havaintojen laadunvalvontaan.

*

Teksti perustuu osittain Ilmatieteen laitoksen tiedotteeseen. Kuvat: DLR

Onni on uusi kupu

To, 05/31/2018 - 10:54 By Toimitus
Metsähovin radioteleskoopin kupu. Kuva: Metsähovin radiotutkimusasema

Metsähovin radiotutkimusaseman maamerkki on suuren radioteleskoopin päällä oleva kupu. Nyt asema on saanut lähes miljoonan euron rahoituksen vanhan ja väsyneen kuvun uusimiseen.

Metsähovin radioteleskooppi on käytössä kellon ympäri vuoden jokaisena päivänä ja kupu suojaa sitä lumelta, tuulelta, sateelta ja auringon lämpösäteilyltä.

Valkoinen kupu on halkaisijaltaan noin 20 metriä ja se on radioaallonpituuksilla lähes näkymätön, joten teleskooppi pystyy tekemään havaintoja kuvun sisällä melkein kuin kupua ei olisikaan.

”Uusi kupu mahdollistaa tarkkojen mittausten tekemisen seuraavaksi 25 vuodeksi”, kertoo Metsähovin johtaja Joni Tammi Aalto-yliopiston tiedotteessa.

 

Radioteleskoopin suuntaus miljardien valovuosien päähän on niin tarkkaa, että pienetkin tuulenpuuskat häiritsisivät mittauksia. Myös Auringon lämpösäteily kuumentaisi herkkää vastaanotinta ja pahimmillaan jopa vaurioittaisi laitteistoa. Kuvun sisällä teleskooppi on jatkuvasti varjossa, jolloin sen voi suunnata kohti Aurinkoa huoletta, ja tämä mahdollistaa mm. Metsähovissa neljäkymmentä vuotta tehdyt aurinkohavainnot.

Talvella kuvun päälle satanut lumi sulatetaan lämmittämällä kuvun sisäilmaa kymmeniä asteita. Kuuma ilma nousee ylös ja sulattaa lumen, joka valuu vetenä alas maahan jättäen kuvun puhtaaksi.

Uutta kupua ei noin vain osteta kaupasta, sillä maailmassa on vain pari valmistajaa, jolta saadaan tarpeeksi laadukas kupu tilattua. Kupu pitää suunnitella siten, että sen muoto ei häiritse radiosignaalien kulkemista.

Tarkoitus on, että uusi kupu on käytössä ensi vuoden aikana.

*

Artikkeli on Aalto-yliopiston tiedote lähes sellaisenaan.

Kuuden kvarkin "tupla-baryoni" on teoriassa mahdollinen

Ti, 05/29/2018 - 12:59 By Markus Hotakainen

Aineen perusosaset eli protonit ja neutronit rakentuvat kolmesta tiukkaan pakkautuneesta kvarkista. Uudella simulaatiolla on todettu, että yhdessä hiukkasessa voi olla jopa kuusi kvarkkia.

Tutkimus tehtiin kvanttiväridynamiikkaan perustavalla simulaatiolla, jota pyöritettiin maailman tehokkaimpiin lukeutuvassa K-supertietokoneessa. Asialla olivat japanilaisen RIKEN-tutkimuskeskuksen ja useiden yliopistojen tutkijat.

Kyseessä ei siis ole varsinainen löytö, koska kuudesta kvarkista muodostuvaa "dibaryonia" ei ole havaittu. Sellaisia saattaa kuitenkin esiintyä äärimmäisissä olosuhteissa kuten neutronitähtien sisuksissa tai saattoi esiintyä hyvin varhaisessa maailmankaikkeudessa pian alkuräjähdyksen jälkeen.

Periaatteessa yksi dibaryoni tunnetaan jo entuudestaan: deuteroni eli deuteriumin, raskaan vedyn ydin, joka rakentuu kahdesta baryonista, protonista ja neutronista. Siltä pohjalta tutkijat ovat pohtineet, voisiko vastaavanlaisia tuplahiukkasia olla muitakin.

Supertietokoneella tehdyn simulaation perusteella teoriassa on mahdollista, että kaksi Omega-baryonia, kolmen outokvarkin muodostamaa hiukkasta, voi klikkiytyä äärioudoksi dibaryoniksi. Samalla saatiin viitteitä siitä, miten se olisi kenties mahdollista havaita hyvin suurella energialla tapahtuvissa hiukkastörmäyksissä.

"Olimme hyvin onnekkaita päästessämme tekemään laskelmat K-tietokoneella. Sen avulla pystyttiin laskemaan nopeasti valtaisa määrä muuttujia. Silti meiltä vei lähes kolme vuotta saada valmiiksi di-Omegaa koskevat tuloksemme", toteaa Shinya Gongyo RIKEN-tutkimuskeskuksesta.

"Tutkimus auttaa meitä ymmärtämään outojen baryonien eli hyperonien välisiä vuorovaikutuksia ja tavallisen aineen muuttumista äärimmäisissä olosuhteissa kuten neutronitähdissä niin kutsutuksi hyperoniaineeksi, joka rakentuu protoneista, neutroneista ja outokvarkeista muodostuneista hyperoneista, ja edelleen ylös-, alas- ja outokvarkeista rakentuvaksi kvarkkiaineeksi", pohtii Tetsuo Hatsuda niin ikään RIKEN-keskuksesta.

Tutkimuksesta kerrottiin RIKEN-tutkimuskeskuksen uutissivuilla ja se on julkaistu Physical Review Letters -tiedelehdessä.

Kuva: Keiko Murano

Tähän ei pysty edes Ringo Starr – kvanttirumpu soi ja on soimatta yhtä aikaa

Ke, 05/23/2018 - 12:18 By Markus Hotakainen

Brittiläis-australialaisen tutkijaryhmän tulokset saavat huippurumpalitkin kalpenemaan kateudesta. Valosta tehty rumpukapula saa mikroskooppisen instrumentin värähtelemään samaan aikaan kuin se ei värähtele.

Tutkimus ei kuitenkaan liity musiikkiin vaan pyrkimyksiin ymmärtää klassisen fysiikan ja kvanttimaailman hämmentävää rajaa.

Kvanttimekaniikassa esimerkiksi "kappaleilla" havaitaan samanaikaisesti sekä hiukkasten että aaltojen ominaisuuksia, mutta makromaailmassa moiset kummallisuudet katoavat. Miksi?

Ehkä siksi, että ne eivät sittenkään katoa tyystin. Tuoreessa tutkimuksessa on onnistuttu saamaan aikaan kvanttikäyttäytymistä esineessä, joka on mahdollista nähdä paljain silmin – jos kohta juuri ja juuri.

"Tällaisten järjestelmien avulla on todennäköisesti mahdollista kehittää uutta kvanttitehostettua tekniikkaa, kuten huipputarkkoja ilmaisimia ja uudenlaisia muuntajia", arvelee tutkimusta johtanut Michael Vanner Lontoon Imperial Collegesta.

"Jännittävää on, että tarkastelemalla, miten kvanttisuperpositio toimii suuremmassa mittakaavassa, voimme myös testata kvanttimekaniikan äärimmäisiä rajoja."

Kun rumpua lyö kapulalla, rumpukalvo alkaa värähdellä, jolloin syntyy korvin kuultava ääni. Kvanttimaailmassa rumpu voi värähdellä ja pysyä paikallaan samanaikaisesti. Käytännössä moisen ristiriitaiselta kuulostavan ilmiön toteuttaminen ei kuitenkaan ole helppoa.

"Jotta pienessä rummussamme saa aikaan kvanttivärähtelyjä, tarvitsemme erikoisen rumpukapulan", toteaa tutkimukseen osallistunut Martin Ringbauer Queenslandin yliopistosta Australiasta.

Kvanttirummutuksessa käytettiin hyväksi viime vuosina nopeasti kehittynyttä kvantti-optomekaniikkaa: "rumpukapulana" lasersäde. Se oli kuitenkin helpommin sanottu kuin tehty.

Ringbauerin mukaan kokeessa sovellettiin optisesta kvanttilaskennasta lainattua kikkaa. "Muokkasimme rumpukapulan ominaisuuksia tekemällä mittauksia yksittäisistä valohiukkasista eli fotoneista. Sillä pääsimme kehittämään mekaanista versiota Schrödingerin kissasta eli rumpua, joka samanaikaisesti värähtelee ja on liikkumatta."

Koejärjestelyä häiritsivät lämpöliikkeen korostamat klassisen fysiikan ilmiöt, joten jatkotutkimuksessa on tarkoitus alentaa lämpötila lähelle absoluuttista nollapistettä, jolloin kvanttimekaniikka muuttuu hallitsevaksi.

Perimmäisenä tavoitteena on selvittää mahdollisia kvanttimekaniikan ennestään tuntemattomia ominaisuuksia ja kehittää kenties teoria, joka yhdistää kvanttimaailman ja gravitaation.

Kvanttirummusta kerrottiin Lontoon Imperial Collegen uutissivuilla ja tutkimus on julkaistu New Journal of Physics -tiedelehdessä.

Kuva: Imperial College London