Onko skyrmioni pallosalaman salaisuus?

Su, 03/04/2018 - 22:52 By Toimitus
Taiteelljan näkemys kvanttimekaanisesta pallosalamasta. Kuva: Heikka Valja.

Aalto-yliopiston ja yhdysvaltalaisen Amherst Collegen tutkijat ovat ensi kertaa onnistuneet luomaan kvanttikaasussa kolmiulotteisen skyrmionin. Se ennustettiin teoreettisesti yli 40 vuotta sitten, mutta vasta nyt se on havaittu myös kokeellisesti.

”Olemme luoneet keinotekoisen sähkömagneettisen solmun, kvanttipallosalaman, vain kahden vastakkaiseen suuntaan pyörivän sähkövirran avulla", kertoo tutkimuksen teoreettisesta osuudesta vastannut tutkija Mikko Möttönen.

"Pidän siksi mahdollisena, että luonnollinen pallosalama voisi syntyä tavanomaisessa salamaniskussa.”

Video kuvaa skyrmionin kokeellista luontia sivusta. Eri magneettisen momentin eli spin-vektorin suunnat muodostuvat erillisiin alueisiin oikealla (ylöspäin), keskellä (vaakasuunta) ja vasemmalla (alaspäin). Alueet on kuvannettu erillisinä, vaikka todellisuudessa kondensaatteja on vain yksi. Mitä vaaleampi väri kondensaatissa on, sitä suurempi on hiukkastiheys. Video: Tuomas Ollikainen.

 

Möttönen kertoo myös nähneensä itse talon sisään syöksyneen pallosalaman. Vastaavia havaintoja on tehty läpi historian, mutta fyysisiä todisteita on vähän.

Magneettisten momenttien eli spinien muodostamat solmut luodaan erittäin harvassa ja kylmässä kvanttikaasussa. Spinien muodostamilla solmuilla on monia pallosalamaa muistuttavia ominaisuuksia. Joidenkin tutkijoiden mukaan pallosalama koostuu varautuneiden hiukkasvirtojen kietoutuneista vyyhdeistä.

Näkymä koelaitteiston tyhjiökammioon, jossa kolmedimensioinen skyrmioni luotiin. Kuva: Russell Anderson.
Näkymä koelaitteiston tyhjiökammioon, jossa kolmedimensioinen skyrmioni luotiin. Kuva: Russell Anderson.

Kvanttikaasun atomien liike vastaa varautunutta hiukkasta pallosalaman solmumaisessa magneettikentässä. Solmujen kestävyys voi olla syy siihen, miksi pallosalama tai plasmapallo elää yllättävän pitkään verrattuna salamaniskuun. Nyt saavutetut tutkimustulokset voivat innoittaa löytämään uusia tapoja pitää plasmapallo koossa myös fuusioreaktorin sisällä.

”Pitää tutkixa tarkemmin, voiko tällaisella menetelmällä saada aikaan myös oikeita pallosalamia. Jatkotutkimus voisi johtaa esimerkiksi nykyistä vakaampaan fuusioreaktoriin, kun plasmaa voitaisiin pitää koossa nykyisiä keinoja tehokkaammin”, tarkentaa Möttönen.

Leikkaus pallomaisen skyrmionin rakenteesta sen luomisprosessin aikana. Skyrmionin muodostavan kentän tilaa kuvataan kolmikolla, jossa on kolme kohtisuoraa akselia. Aluksi kaikki kolmikot osoittavat samaan suuntaan, mutta luomisprosessin aikana ne pyörivät eri akselien ympäri, mikä lopulta saa aikaan skyrmionin, jossa kukin suunta esiintyy tasan kaksi kertaa. Kolmikon vihreä kärki osoittaa spinin suunnan. Kaikki kolmikot, joilla on sama spinin suunta, muodostavat suljetun käyrän, joita näytetään videossa kolme (keltainen, violetti ja oranssi). Kukin tällainen rengas lävistää kaikki muut renkaat kerran, mistä syntyy solmumainen rakenne. Video: David Hall.

Spinit pyörivät skyrmionissa ja saavat aikaan kestävän solmun.

”Kvanttikaasu jäähdytetään hyvin kylmäksi, Bosen-Einsteinin kondensaatiksi, jossa kaikki atomit päätyvät matalimman energian tilaan. Silloin se käyttäytyy kuin jättimäinen atomi tavanomaisen kaasun sijaan”, kuvailee tutkimuksen kokeellisesta osuudesta vastannut professori David Hall.

Skyrmioni luodaan alkutilasta, jossa jokaisen atomin magneettinen momentti eli spin osoittaa ylöspäin, kuten myös luonnollinen magneettikenttä. Sitten magneettikenttää muutetaan niin, että sen nollakohta asettuu kaasusta muodostuvan kondensaatin keskelle. Spinit lähtevät pyörimään kussakin paikassa olevan magneettikentän suunnan ympäri. Koska magneettinen kenttä osoittaa kaikkiin mahdollisiin suuntiin nollakohdan lähellä, spinit kiertyvät solmuun.

Skyrmionin solmumaisessa rakenteessa kukin alue, jossa spin osoittaa tiettyyn samaan suuntaan, muodostaa rinkulan, ja eri rinkulat menevät toistensa läpi. Siksi solmua voidaan löysätä tai sitä voidaan siirtää, mutta ei rikkoa.

”Skyrmionin ja kvanttisolmun erottaa siitä, että skyrmionissa spinit eivät vain kierry solmulle, vaan myös kondensaatin kvanttivaihe pyörii ympäri”, kertoo Hall.

Jos atomien spinin suunta muuttuu kondensaatin sisällä, kondensaatti käyttäytyy kuin se olisi varattu hiukkanen luonnollisessa magneettikentässä. Solmussa oleva spinien rakenne saa aikaan tällaisen keinotekoisen magneettikentän, joka on täsmälleen erään pallosalaman mallin mukainen magneettikenttä.

*

Juttu on Aalto-yliopiston tiedote käytännössä suoraan kopioituna.