pimeä energia

Sattuuhan sitä paremmissakin (tiede)piireissä – osa 1

Pe, 03/23/2018 - 18:17 Markus Hotakainen

Viime päivinä on mediassa ja varmasti myös akateemisissa kahvipöytäkeskusteluissa naureskeltu kosmologian professori Peter Dunsbylle, joka äskettäin löysi ”hyvin kirkkaan kohteen Trifidi- ja Laguunisumujen lähistöltä”.

Hätäpäissään professori ehätti viestittää siitä netin välityksellä kollegoilleen ja kehotti muitakin tarkkailemaan löytöään, kunnes hyvin pian huomasi itsekin bonganneensa taivaalta planeetta Marsin.

Sattuuhan näitä eikä kosmologian professorilta voi edellyttää tähtitaivaan yksityiskohtien tarkkaa tuntemusta, kun varsinaisena tutkimuskohteena on koko maailmankaikkeus. Tai pitäisi voida, mutta näemmä ei.

Tieteellisen tutkimuksen yksi keskeinen lähtökohta on kyseenalaistaminen, niin havaintojen kuin teorioidenkin. Joskus se vain innostuksen huumassa unohtuu. Ja siitä sitten seuraa näitä hassuja löytöjä, jo aiemmin tehtyjä keksintöjä ja tuulesta temmattuja väitteitä.

Hypoteesit on tietenkin paljon helpompi osoittaa vääriksi kuin oikeiksi, mutta vääriksi osoittautuneet hypoteesitkin viitoittavat usein tietä kohti sitä oikeaa tai ainakin parempaa teoriaa.

Kun Albert Einstein kehitti vähän yli 100 vuotta sitten yleisen suhteellisuusteorian, hän joutui lisäämään yhtälöihinsä niin sanotun kosmologisen vakion, hihasta vedetyn poistovoiman. Se piti staattiseksi mielletyn maailmankaikkeuden kasassa, sillä gravitaatio olisi muuten saanut kosmoksen luhistumaan kasaan.

1920-lopulla todettiin, että maailmankaikkeus ei olekaan staattinen, ikuisesti samanlaisena pysyvä, vaan se laajenee. Kosmologista vakiota ei enää tarvittu, koska maailmankaikkeuden luhistumisen esti sen jatkuva laajeneminen.

Einstein piti kosmologisen vakion lisäämistä "suurimpana munauksenaan" – mutta ei voinut tietenkään tietää, että tuli tehneeksi tuplamöhläyksen.

1990-luvun lopulla todettiin, että maailmankaikkeuden suhteen oltiin sittenkin oltu väärässä. Se kyllä laajenee, mutta ei vähitellen hidastuen, vaan kaiken aikaa kiihtyen. Jokin saa maailmankaikkeuden koon kasvamaan nopeammin ja nopeammin. Universumissa täytyy olla aiemmin tuntematon poistovoima, joka kumoaa gravitaation jarruttavan vaikutuksen.

Kosmologinen vakio is back! Vaikka sitä sanotaankin pimeäksi energiaksi. Albert Einstein erehtyi kahdesti.

Maailmankaikkeuden laajenemisesta ja muistakin ominaisuuksista on tehty kohta kolmenkymmenen vuoden ajan havaintoja Hubble-avaruusteleskoopilla, mutta läheltä piti, ettei kalliista kaukoputkesta tullut täysi susi.

Kun Hubble vietiin avaruussukkulalla kiertoradalleen ja sen kameroilla otettiin ensimmäiset kuvat, tähtitieteilijöiden suut loksahtivat auki, mutta muista syistä kuin olisi voinut odottaa. Kristallinkirkkaiden ja huipputarkkojen otosten sijasta ruudulla näkyi suttuista puuroa, joka oli laadultaan kehnompaa kuin harrastajakaukoputkilla otetut kuvat.

Hubble oli likinäköinen. Pian selvisi syykin. 2,4-metrinen pääpeili oli hiottu väärin. Ei tyystin, mutta ratkaisevasti: paraboloidin muotoinen pinta on reunoiltaan neljä mikrometriä liian loiva. Virhe oli luonteeltaan sellainen, että kuka tahansa huolellinen harrastaja pystyy kaukoputken peiliä hioessaan moisen välttämään.

Onneksi Hubble-avaruusteleskooppi oli alkujaankin suunniteltu huollettavaksi avaruudessa, joten pikaisesti – tai niin pikaisesti kuin se avaruustekniikan osalta on mahdollista – rakennettiin korjausoptiikkamoduuli, joka käytiin vaihtamassa yhden havaintoinstrumentin tilalle. Hubble sai periaatteessa silmälasit, vaikka todellisuudessa ne rakentuvatkin pienistä peileistä.

Virheistä opitaan, mutta suoranaisten huiputusten hyötyjä on vaikea keksiä, pikemminkin niistä on pelkkää haittaa.

Vuonna 1908 harrastaja-paleontologi Charles Dawson osui Sussexissa kotinsa lähistöllä hiekkakuopalle, jossa joukko työmiehiä oli lapioimassa soraa. He näyttivät Dawsonille luunpalasia, joita olivat löytäneet soran seasta. Tai itse asiassa he olivat löytäneet kokonaisen kallon, mutta se oli lapion iskusta rikkoutunut palasiksi.

Osa palasista oli ehtinyt jo hukkua hiekan ja soran joukkoon, mutta käsiinsä saamista osista Dawson sai koottua jonkinlaisen hahmotelman hajonneesta kallosta.

Ja se oli mullistava! Kun Luonnonhistoriallisen museon tutkija Arthur Woodward tarkasteli kalloa huolellisesti, hän tuli siihen tulokseen, että se on vähintään 500 000 vuotta vanha. Kallossa oli samanlaisia piirteitä kuin apinoilla, mutta leukaluu ja erityisesti hampaat muistuttivat ihmisen purukalustoa.

Charles Darwinin evoluutioteorian puuttuva rengas oli vihdoin löytynyt. Tässä oli ihmisen esi-isä, tieteelliseltä nimeltään Eoanthropus dawsoni eli kansanomaisemmin Piltdownin ihminen.

Paitsi ettei ollut. Usko löydön aitouteen oli kuitenkin niin vahva, että kallo pystyttiin osoittamaan väärennökseksi vasta 1950-luvun alussa, pitkälti yli 30 vuotta Charles Dawsonin kuoleman jälkeen.

Kallon luut olivat vanhoja, mutta eivät kuitenkaan 50 000 vuotta vanhempia. Ihmisen kallosta peräisin olevien palasten lisäksi todistuskappaleina olleet leukaluu ja hampaat olivat orangin ja soran seasta löytynyt yksittäinen kulmahammas oli kuulunut simpanssille. Hampaistoa oli viilailtu, jotta se muistutti enemmän ihmisen hampaita.

Edelleenkään ei tiedetä, oliko huijari Dawson itse vai joku muu. Joka tapauksessa Piltdownin ihminen johti tutkijoita harhaan vuosikymmenten ajan. Ihmisen uskottiin kehittyneen Euroopassa, vaikka nykykäsityksen mukaan sukujuuremme ovat vahvasti Afrikan puolella.

Tieteellisessä tutkimuksessa tehdyt virheet – elleivät sitten ole häikäilemättömiä huijauksia – johtuvat usein tietämättömyydestä tai taitamattomuudesta, mutta joskus syynä voi olla myös lapsellisuus. Tosin silloin kyse ei ole varsinaisesti tieteellisestä tutkimuksesta.

Nikola Tesla, erityisesti sähkötekniikan alalla useita merkittäviä keksintöjä tehnyt amerikanserbi, oli jo pikkupoikana kiinnostunut kaikesta mahdollisesta maan ja taivaan välillä. Ihan kirjaimellisestikin.

Tesla oli huomannut, että hengittäessään hyvin tiheään eli hyperventiloidessaan hän alkoi tuntea olonsa kevyeksi. Siitähän voisi olla apua lentämisessä!

Poikamaisella innolla Tesla päätti testata teoriaansa saman tien. Hän nappasi käteensä sateenvarjon, kapusi navetan katolle ja hengitteli hetken kiivaasti sisään ja ulos, kunnes alkoi tuntea huimausta. Silloin oli Teslan mielestä oikea aika hypätä – ja hän myös hyppäsi.

Tömähdys maahan vei pojalta tajun ja hän toipui saamistaan vammoista vasta viikkojen kuluttua. Ehkä neron varhaiset, joskin epäonnistuneet kokeilut lentämisen saralla saivat hänet myöhemmällä iällään mieltymään syvästi kyyhkysiin.

Jatkuu…

Kuvat: www.natedsanders.com, NASA/ESA, John Cooke

Ennätykset uusiksi – kaikkeuden kaukaisin supernova

Ti, 02/20/2018 - 21:54 Markus Hotakainen

Tähtitieteilijät pystyvät tähyämään yhä kauemmas sekä ajassa että avaruudessa. Nyt on nähty tähden kuolema yli kymmenen miljardia vuotta sitten. Tai oikeastaan se nähtiin jo syksyllä 2016, mutta havainto saatiin varmistettua viime vuoden lopulla.

Vuonna 2013 käynnistyneen Dark Energy Survey -kartoituksen (DES) tarkoituksena on pyrkiä löytämään johtolankoja pimeän energian olemuksesta tekemällä havaintoja sadoista miljoonista galakseista. Sivutuotteena saadaan tietoa paljon muustakin, muun muassa kaukaisista ja samalla muinaisista supernovista.

Nuoressa maailmankaikkeudesta räjähtänyt tähti DES16C2nm on luokiteltu "ylikirkkaaksi supernovaksi" (superluminous supernova, SLSN), jotka ovat kaikkein voimallisimpia, mutta myös harvinaisimpia tähtien räjähdyksiä.

Niiden arvellaan olevan seurausta prosessista, jossa kaksoistähden toisena osapuolena olevaan neutronitähteen kertyy ainetta. Kun sen massa kasvaa tiettyä rajaa suuremmaksi, neutronitähti räjähtää hajalle.

Tutkimusryhmää johtaneen Southamptonin yliopiston Mathew Smithin mukaan jo ennätyksellinen etäisyys tekee havainnosta kiinnostavan, mutta sen myötä saadaan myös ainutkertaista tietoa tähän erikoislaatuiseen luokkaan kuuluvien supernovien luonteesta.

"Supernovan lähettämä ultraviolettisäteily kertoo meille räjähdyksessä syntyvien metallien määrästä sekä siinä esiintyvästä lämpötilasta. Kumpikin on oleellinen tieto, jotta voimme ymmärtää, mikä saa aikaan tällaisia kosmisia pamauksia", Smith toteaa.

DES16C2nm on ensimmäinen laatuaan DES-kartoituksessa, mutta tutkijoiden mukaan niitä on jatkossa helpompi löytää, kun nyt tiedetään, mitä pitää etsiä. "Tällaisista supernovista ei ollut aavistustakaan, kun aloitimme DES-kartoituksen", lisää Bob Nichol Portsmouthin yliopistosta.

DES-hankkeessa on mukana 400 tähtitieteilijää yli 25 tutkimuslaitoksesta eri puolilta maailmaa. Havaintojen tekemiseen käytetään huippuherkkää 570 megapikselin digikameraa, joka on asennettu nelimetriseen kaukoputkeen Cerro Tololon observatoriossa Chilessä.

Sillä kuvataan kaikkiaan 5 000 neliöasteen kokoista kaistaletta eteläisestä tähtitaivaasta. Osa havaintoajasta käytetään tiettyjen taivaanalueiden kuvaamiseen yhä uudelleen noin kerran viikossa, jolloin haaviin saadaan lyhytaikaisempia ilmiöitä, kuten nyt löydetyn kaltaisia supernovia.

Tutkimus on julkaistu The Astrophysical Journal -tiedelehdessä (maksullinen).

Kuva: M. Smith/DES collaboration

Mustat aukot sysivät ainetta universumin tyhjiin onkaloihin

To, 02/25/2016 - 08:37 Markus Hotakainen
Kosmista "saippuavaahtoa"

Maailmankaikkeus muistuttaa rakenteeltaan saippuavaahtoa. Galaksit ja niiden muodostamat joukot ovat ryhmittyneet valtaviksi rihmoiksi ja seinämiksi, joiden välit ovat tyhjää täynnä. Tai niin on kuviteltu.

Uuden tutkimuksen mukaan vaahdossa olevia "kuplia" vastaavilla tyhjinä  pidetyillä alueilla onkin paljon ainetta, jopa viidennes kaikesta maailmankaikkeuden "tavallisesta" eli näkyvästä aineesta. Galaksien osuus universumin ainesisällöstä olisikin ainoastaan 1/500.   

Nykykäsityksen mukaan tätä tavallista ainetta olisi koko maailmankaikkeudesta ainoastaan 4,9 prosenttia, kun pimeän aineen osuus olisi 26,8 prosenttia ja pimeän energian, joka saa maailmankaikkeuden laajenemisen kiihtymään, 68,3 prosenttia.

Markus Haiderin johtama ryhmä on tarkastellut maailmankaikkeuden rakennetta sekä massan jakaumaa Illustris-simulaatiolla, jossa lasketaan suurella tarkkuudella galaksien syntyä ja kehitystä.

Simulaatio kuvaa kuutionmuotoista avaruuden aluetta, jonka yhdellä sivulla on mittaa noin 350 miljoonaa valovuotta. Alkupisteenä on 12 miljoonan vuoden ikäinen maailmankaikkeus, jonka massan – sekä tavallisen että pimeän aineen – ja gravitaation vuorovaikutusta seurataan laskennallisesti tähän päivään saakka.

Tutkijoiden mukaan noin puolet maailmankaikkeuden kokonaismassasta on alueilla, joille galaksit sijoittuvat, mutta ne muodostavat kokonaistilavuudesta ainoastaan 0,2 prosenttia. 44 prosenttia massasta on galakseja ympäröivien rihmojen verkostossa. 

Universumin tyhjät onkalot vievät kokonaistilavuudesta peräti 80 prosenttia, mutta niissä olevan massan osuus on ainoastaan kuusi prosenttia. Yllätys oli se, että tavallisesta aineesta jopa viidennes, noin 20 prosenttia, on kulkeutunut näihin tyhjinä pidettyihin onkaloihin. 

Syypäänä tähän kosmiseen "siivoukseen" pidetään supermassiivisia mustia aukkoja, jotka piileskelevät galaksien keskustoissa. Osa niihin syöksyvästä aineesta muuttuu energiaksi, joka saa ympäröivän kaasun kiivaaseen liikkeeseen.

Ainevirtaukset ulottuvat satojentuhansien valovuosien etäisyydelle mustista aukoista eli kauas galaksien ulkopuolelle. Lopulta kaasu päätyy galaksijoukkojen välillä oleviin onkaloihin, piiloon maailmankaikkeuden rakennetta selvitteleviltä tutkijoilta. 

Ongelmana on se, että onkaloihin kertynyt aine on hyvin harvaa ja äärimmäisen kylmää, joten se ei juurikaan säteile. Siksi sitä on hyvin vaikea havaita. Eikä sitä nytkään ole siis havaittu: arviot aineen määrästä perustuvat ainoastaan tietokonesimulaatioon.

Tutkimuksesta kerrottiin Royal Astronomical Societyn uutissivuilla ja se on julkaistu seuran Monthly Notices -tiedelehdessä.

Kuva: Markus Haider/Illustris collaboration

Pimeä "häiveaine" voi selittää maailmankaikkeuden puuttuvan massan

Ma, 09/28/2015 - 06:10 Markus Hotakainen
Pimeän aineen jakauma

Tähtitieteilijöiden vuosisataiset ponnistukset maailmankaikkeuden rakenteen selvittämisessä ovat johtaneet siihen, että 95 prosenttia universumin massasta ja energiasta on kadoksissa.

Tavallista ainetta, josta tähdet, planeetat ja kaikki muu näkemämme – ja myös me itse – koostuu, on alle viisi prosenttia. Pimeä aine muodostaa maailmankaikkeudesta reilun neljänneksen ja pimeä energia runsaat kaksi kolmannesta.

Pimeää ainetta on jopa 83 prosenttia maailmankaikkeuden kaikesta aineesta (tässä energia on jätetty huomiotta), mutta se ei vuorovaikuta tavallisen aineen kanssa sähkömagneettisen, vahvan tai heikon voiman välityksellä. Se ei heijasta valoa eikä tavallisen ja pimeän aineen "törmäys" tunnu missään. 

Toistaiseksi ainoa keino todeta pimeän aineen olemassaolo on sen gravitaatiovaikutus galakseissa ja galaksijoukoissa. Kuvassa on pimeän aineen suuren mittakaavan jakauma, joka perustuu Hubble-avaruusteleskoopilla tehtyihin havaintoihin sen gravitaatiolinssivaikutuksista.

Pimeä energia on täydellinen mysteeri, mutta pimeän aineen jäljillä ollaan hieman paremmin. Tutkijat ovat nyt kehittäneet teorian, joka saattaa selittää, miksi pimeää ainetta ei ole pystytty havaitsemaan maanpäällisillä kokeilla.

Lawrence Livermoren kansallisessa laboratoriossa (Lawrence Livermore National Laboratory, LLNL) on laadittu Vulcan-supertietokoneella tehtyjen laskelmien avulla malli, jonka mukaan pimeä aine on nykyisin luonnostaan yhtä hankala havaita kuin häivehävittäjät (todellisuudessa vielä paljon hankalampi…). 

Varhaisen maailmankaikkeuden korkeissa lämpötiloissa ja suurissa tiheyksissä se olisi kuitenkin vuorovaikuttanut tavallisen aineen kanssa ja ollut helposti havaittavissa. 

Tutkijaryhmää johtanut Pavlos Vranas vertaa häiveaineen neutronia tavalliseen neutroniin. Alhaisissa lämpötiloissa – eli nykyisessä maailmankaikkeudessa – neutronin muodostavat kvarkit ovat tiukasti sidoksissa toisiinsa eikä hiukkasella ole sähkövarausta. Korkeissa lämpötiloissa – eli maailmankaikkeuden varhaisvaiheissa – sähköisesti varatut kvarkit vuorovaikuttivat melkein kaikkien muiden hiukkasten kanssa. 

Erona olisi se, että neutronia koossa pitävän, kvanttiväridynamiikan mukaisen vahvan vuorovaikutuksen sijasta häiveneutronissa vaikuttaisi toistaiseksi tuntematon vahva voima, jonka ominaisuudet määrittyisivät "pimeän kvanttiväridynamiikan" mukaan.  

"On huomionarvoista, että ehdokas pimeän aineen hiukkaseksi on satoja kertoja protonia raskaampi ja koostuu sähköisesti varatuista osasista, mutta on silti kyennyt välttämään suorat havainnot niin pitkään", Vranas toteaa.

Protonien tapaan pimeä häiveaine on pysyvää eikä hajoa edes kosmisessa aikaskaalassa. Se voi kuitenkin synnyttää suuren joukon muita alkeishiukkasia, jotka hajoavat pian muodostumisensa jälkeen. Niillä voisi olla sähkövaraus, mutta ne ovat hajonneet jo kauan sitten.

Riittävän suuritehoisella hiukkaskiihdyttimellä, kuten CERNin LHC:llä (Large Hadron Collider), hiukkasia voitaisiin kuitenkin tuottaa ensimmäisen kerran sitten maailmankaikkeuden alkuaikojen. Ne saattaisivat näkyä hiukkasilmaisimissa, koska niillä on mahdollisesti sähkövaraus.

"Maanalaisten ilmaisimien tai LHC:n avulla voidaan kenties piankin löytää todisteita uudelle pimeän häiveaineen teorialle – tai kumota se", Vranas veikkaa.

Uudesta teoriasta kerrottiin LLNL:n uutissivuilla ja tutkimus on julkaistu Physical Review Letters -tiedelehdessä.

Kuva: NASA/ESA/Hubble

 

 

 

Pimeää energiaa jäljitettiin laboratoriossa

Pe, 08/21/2015 - 13:50 Markus Hotakainen
UCLA:n tyhjiökammio

Pimeä energia saa maailmankaikkeuden laajenemaan kiihtyvällä vauhdilla. Pimeä energia muodostaa yli kaksi kolmasosaa universumin massa- ja energiasisällöstä. Kukaan ei kuitenkaan tiedä, mitä pimeä energia on.

Pimeä energia löydettiin vuonna 1998, kun kaukaisten supernovien tutkimus osoitti, että maailmankaikkeuden laajeneminen kiihtyy eikä suinkaan hidastu, kuten aiemmin oli arveltu. "Löytäminen" on kuitenkin ehkä liioittelua, sillä pimeä energia on toistaiseksi teoreettinen selitys kiihtyväksi havaitulle liikkeelle.

Pimeän energia olemusta on yritetty selvittää erilaisin mallein ja kokein, mutta arvoitus on yhä vailla ratkaisua. Yhden olettamuksen mukaan pimeän energian aikaansaama työntövoima on mitattavissa vain alueilla, joilla tiheys on äärimmäisen pieni – esimerkiksi galaksienvälisessä avaruudessa.

Niin kauas on mahdoton viedä mittalaitteita, joten tutkijat ovat yrittäneet luoda vastaavanlaiset olosuhteet laboratoriossa. Paul Hamiltonin johdolla on UCLA:ssa (University of California, Los Angeles) kehitetty laitteisto, jolla pimeän energian aiheuttamaa voimaa voidaan mitata. Tai ainakin sitä voidaan yrittää mitata.

Hamiltonin tutkijaryhmän tähtäimessä olivat vuodesta 2004 lähtien tutkitut "kameleonttikentät", jotka saattavat olla pimeän energian aiheuttaman voiman taustalla. Siis teoreettisesti. Kenttien synnyttämä voima, joka olisi "viides voima" tuttujen gravitaation sekä sähkömagneettisen, vahvan ja heikon voiman rinnalla, riippuisi ainetiheydestä.

Viidettä voimaa ei ole yrityksistä huolimatta kyetty havaitsemaan, sillä teorian mukaan tiheillä alueilla – esimerkiksi Maan ilmakehässä – kentät heikkenisivät niin vähäisiksi, että voiman mittaaminen kävisi mahdottomaksi.

UCLA:n koelaitteisto oli suunnilleen jalkapallon kokoinen tyhjiökammio, jossa paine laskettiin triljoonasosaan normaalista ilmanpaineesta. Kammiossa oli cesium-atomeja, joiden liikkeen perusteella viidettä voimaa pyrittiin mittaamaan. 

Atomit jäähdytettiin kymmenen miljoonasosa-asteen päähän absoluuttisesta nollapisteestä, jotta niiden oma liike oli mahdollisimman vähäistä. Sitten kammioon suunnattiin infrapunalasersäde, jonka avulla voitiin määrittää cesium-atomien kiihtyvyys gravitaation ja mahdollisen muun voiman vaikutuksesta.

Kammion keskelle oli asetettavissa marmorikuulan kokoinen alumiinipallo, jonka tarkoitus oli vaimentaa "kameleonttikentät", jolloin mitättömän pienen voiman vaikutus olisi ollut mahdollista mitata. Mittaus tehtiin kahdesti: ensin alumiinipallon ollessa kammiossa ja sitten ilman alumiinipalloa. Teorian mukaan cesium-atomeihin vaikuttavan voiman olisi pitänyt olla eri mittauskerroilla erilainen.

Tutkijat eivät kuitenkaan havainneet atomien liikkeissä minkäänlaisia eroja. Se ei tarkoita, etteikö kameleonttikenttiä saattaisi silti olla olemassa. Nyt saatiin yläraja sille, kuinka voimakkaasti kameleonttikentät voivat vuorovaikuttaa tavallisen aineen kanssa. Pimeä energia ei kuitenkaan edelleenkään saanut selitystä. 

Laboratoriotutkimuksesta kerrottiin UCLA:n uutissivuilla ja se on julkaistu Science-tiedelehdessä (maksullinen)

Kuvat: Holger Müller (tyhjiökammio) ja Simca Bouma (piirros)

 

Pimeä aine vaikuttaa entistä pimeämmältä

To, 03/26/2015 - 21:06 Markus Hotakainen

Maailmankaikkeudesta alle viisi prosenttia on näkyvää ainetta eli galakseja, tähtiä, planeettoja ja kaasua. Noin neljännes on pimeää ainetta ja loput, yli 71 prosenttia, pimeää energiaa, joka saa universumin laajenemaan kiihtyvällä vauhdilla.

Pimeän energian olemuksesta on vain kalpea aavistus eikä pimeää ainetta tunneta juuri sen paremmin. Hubble-avaruusteleskoopilla ja Chandra-röntgensatelliitilla on tehty vastikään havaintoja, jotka osoittavat pimeän aineen olevan vielä "pimeämpää" kuin aiemmin on arveltu.

Paitsi että pimeä aine ei heijasta, ime eikä lähetä säteilyä – eli nimeksi sopisi paremmin "näkymätön aine" – se ei juurikaan vuorovaikuta myöskään itsensä kanssa. Se pystytään havaitsemaan ainoastaan gravitaatiovaikutuksensa ansiosta.

 

 

Tutkimuksen kohteena oli toisiinsa törmääviä galaksijoukkoja. Jo aiemmin on Luotijoukoksi nimettyä kohdetta (kuvassa yllä) havaittaessa todettiin, että galaksijoukkojen törmäyksissä kaasupilvien liike hidastuu ja samalla ne kuumenevat. Kaasuun verrattuna harvakseltaan sijaitsevat tähdet kulkevat pääosin toistensa lomitse mutta pimeä aine jatkaa matkaa kuin mitään ei olisi tapahtunut.

Luotijoukon kuvassa pimeä aine on merkitty sinisellä ja kuumentunut, röntgenalueella säteilevä kaasu vaaleanpunaisella. Pimeä aine ja kaasu ovat selvästi erottuneet toisistaan.

Sama ilmiö on nyt havaittu monissa muissakin galaksijoukkojen törmäyksissä. Kansainvälinen tutkijaryhmä tarkasteli kaikkiaan 72 kosmista kolaria ja pimeä aine käyttäytyy niissä yhtä välinpitämättömästi kuin Luotijoukossa.

 

 

Syynä ei kuitenkaan ole se, että pimeän aineen hiukkaset – mikäli se koostuu hiukkasista – olisivat kaukana toisistaan samaan tapaan kuin tähdet. Toisiinsa törmäävät pimeän aineen kasaumat eivät ole törmäyksestä moksiskaan, koska pimeä aine ei näytä vuorovaikuttavan edes itsensä kanssa.

Tuoreet tulokset eivät edelleenkään paljasta pimeän aineen todellista olemusta, mutta se rajaa vaihtoehtoja, joita tutkijoilla on pohdittavanaan. Seuraavaksi tutkijaryhmän tarkoituksena on tehdä havaintoja yksittäisten galaksien törmäyksistä ja pimeän aineen käyttäytymisestä pienemmässä mittakaavassa.

Uusista tuloksista kerrottiin Hubble-avaruusteleskoopin kotisivuilla ja ne julkaistaan 27. maaliskuuta ilmestyvässä Science-tiedelehden numerossa.

Kuvat: NASA / ESA / D. Harvey (École Polytechnique Fédérale de Lausanne, Switzerland) / R. Massey (Durham University, UK) (kuvasarjat), NASA / CXC / CfA / M. Markevitch et al. / STScI / ESO / University of Arizona / D. Clowe et al. (Luotijoukko)

Kuva viikonvaihteeksi: Komeetta Lovejoy

Pe, 02/27/2015 - 12:55 Markus Hotakainen

Alkuvuodesta taivasta on koristanut komeetta C/2014 Q2 eli Lovejoy. Kirkkaimmillaan se erottui jopa paljain silmin ja edelleen se löytyy kiikarilla Perseuksen ja Kassiopeian tähdistöjen rajamailta.

27. joulukuuta 2014 komeetta osui sattumalta maailman tehokkaimman digikameran kuvakenttään. Tuolloin Lovejoy oli yli 80 miljoonan kilometrin etäisyydellä Maasta ja sen ydintä ympäröivällä komalla oli läpimittaa noin 650 000 kilometriä, melkein kaksi kertaa Maan ja Kuun välinen etäisyys. Komeetan ytimen arvellaan kuitenkin olevan kooltaan vain muutaman kilometrin luokkaa.

Palasista koostuva kuva on otettu "Pimeän energian kameralla", joka on nelimetrisessä Blanco-teleskoopissa Cerro Tololon observatoriossa Andien vuoristossa. Instrumentti rakentuu kaikkiaan 62 ccd-kennosta, jotka muodostavat yhteensä peräti 570 megapikselin kameran. Sen kuvakenttä on halkaisijaltaan noin kaksi astetta eli neljä kertaa Kuun näennäistä läpimittaa suurempi.

Kameralla otettujen kuvien avulla tutkitaan varsinaisesti kaukaisia galakseja ja niiden muodostamia joukkoja sekä galakseissa räjähtäviä supernovia. Tavoitteena on saada entistä tarkempaa tietoa maailmankaikkeuden kiihtyvästä laajenemisesta, jonka aiheuttajaksi on teoretisoitu toistaiseksi tuntematonta pimeää energiaa. Dark Energy Survey -kartoituksesta löytyy lisätietoa projektin kotisivuilta.

Kuvat: Fermilab / Marty Murphy / Nikolay Kuropatkin / Huan Lin / Brian Yanny