elokuu 2017

Metsähovi viimein Suomen virallisessa ajassa - mittaustarkkuus paranee huimasti

To, 08/31/2017 - 21:05 Jarmo Korteniemi
Kuva: New 1lluminati / Flickr

Otaniemi ja Metsähovi on juuri yhdistetty toisiinsa ennennäkemättömän tarkasti. Yhdessä ne pitävät tarkkaa kirjaa Suomen virallisesta ajasta.

Suomen virallinen aika määritellään Otaniemessä. Tehtävä on kuulunut VTT:n Mittaustekniikan keskuksen (MIKES) aikalaboratoriolle jo vuodesta 2000 lähtien. 

Nyt Metsähovin observatorioaluekin on yhdistetty suoraan tähän "aikalähteeseen". Uusi, valokaapelia pitkin toimiva yhteyslinkki rakennettiin jo alkukesästä. Linkin toimintaa ja stabiilisuutta on tutkittu ja mitattu nyt kesän ajan.

Metsähovin observatorioalue sijaitsee Kirkkonummella, 50 kilometrin päässä Otaniemestä. Sieltä löytyvät sekä Maanmittauslaitoksen Paikkatietokeskuksen geodeettinen tutkimusasema että Aalto-yliopiston radiotutkimusasema. Kummankin tahon tutkimustarkkuus paranee (aikaleimojen osalta) Suomen viralliseen aikaan liittämisen johdosta.

Valosignaalin kulkuajan Otaniemestä Metsähoviin ja takaisin huomattiin vaihtelevan yhteydellä seitsemisen nanosekuntia. Syynä on pitkän valokuidun lämpölaajeneminen vuorokauden mittaan. Myös muut valokuidun ominaisuudet muuttuvat samalla hieman.

Ajansiirron tarkkuus on Maanmittauslaitoksen tiedotteen mukaan noin 0,1 nanosekuntia (10-10 s) tai jopa vieläkin parempi. Taajuuden siirrossa taas "päästään tällä hetkellä noin 15 [merkitsevän?] numeron tarkkuuteen".

Wirallinen aika

Suomen virallinen aika määritetään MIKESin aikalaboratoriossa. Ajanmääritykseen käytetään tarkkaa venäläisvalmisteista vetymaseria (CH1-75A). Sen apuna ja varmistuksena toimii lisäksi kaksi muuta vetymaseria sekä kaksi cesium-atomikelloa.

MIKESin ajan virheen sanotaan olevan noin sekunti 100 000 vuodessa. Aikaa myös verrataan jatkuvasti GPS:n avulla välitettyihin kansainvälisiin aikamittauksiin. MIKES ilmoittaa aikansa epävarmuudeksi alle 10 nanosekuntia UTC:hen (universaaliaikaan) verrattuna.

Suomen virallisen ajan poikkeamat kansainvälisestä ajasta vuosina 2011–12.

Aikamittauksessa käytetty vetymaser vastaa toimintaperiaatteeltaan laseria (säteilykimppu on koherentti, samassa tahdissa ja samaa aallonpituutta), mutta siinä käytetään näkyvän valon sijasta mikroaaltoja. Maserit ovat yksi tarkimmista nykyään käytössä olevista keinoista pitää kellot ajassa.

Maserilla tehdyn ajanmäärityksen jälkeen ajanhetki viestitetään (siirretään) Metsähoville valokuitua pitkin.

Siirron apuna käytetään uutta White Rabbit -protokollaa. Sen avulla kelloja voidaan synkronoida alle nanosekunnin tarkkuudella pitkienkin matkojen päästä. White Rabbit kehitettiin alunperin Euroopan hiukkasfysiikan tutkimuskeskuksessa CERNissä. Nimi viittaa kelloaan hermostuneesti vilkuilevaan jänikseen Liisa Ihmemaassa -kirjassa.

VTT MIKES oli yksi ensimmäisistä tutkimuslaitoksista, joka otti White Rabbitin käyttöön ajan ja taajuuden siirtämiseksi pitkien välimatkojen päähän.

Ajansiirto tukee geodeettisia mittauksia Metsähovissa. Rakenteilla oleva geodeettinen radioteleskooppijärjestelmä tarvitsee tarkan ajan ja taajuuden mittaustensa pohjaksi. Eivätkä muutkaan Metsähovin mittaukset tietystikään kärsi entistä paremmasta aikatarkkuudesta.

Aikalinkin kautta Suomen virallinen aika voidaan myös liittää entistä paremmin kansainvälisiin geodeettisiin verkostoihin, kuten GNSS-satelliittipaikannusjärjestelmään.

Radiotutkimusasemalla on lisäksi jo atomikelloja, joita voidaan vastavuoroisesti käyttää Suomen virallisen ajan varmentamiseen.

MIKES tarjoaa kellontarkistuspalvelua myös kotikäyttäjille. Se on tosin paljon Metsähoville toimitettua Suomen virallista aikaa epätarkempi. Nopealla nettiyhteydellä pääsee kuitenkin jopa alle 0,1 millisekunnin päähän virallisesta, mikä lienee riittävä useimpien kotikäyttäjien tarpeisiin.

Artikkeli perustuu Maanmittauslaitoksen tiedotteeseen.

Lisätietoa: VTT:n Mittatekniikan keskus MIKES

Otsikkokuva: New 1lluminati / Flickr

Suomen vanhin ydinreaktori pian historiaa - jos STUK hyväksyy purkusuunnitelmat

Ti, 08/29/2017 - 18:51 Jarmo Korteniemi

Otaniemen tutkimusreaktorin purkuprojekti etenee. Samalla saadaan oppia paljon suurempien ydinvoimaloiden purkamista varten. Niistä ensimmäiset tulevat tiensä päähän noin vuosikymmenen kuluttua.

Samalla kun Suomeen on tekeillä kaksi uutta ydinvoimalaa, aletaan maamme vanhinta reaktoria purkamaan. Prosessi on kuitenkin hidas, sillä viranomaisten täytyy varmistaa, että homma hoituu kunnolla. Seuraavan vuoden ajan pallo on Säteilyturvakeskuksella.

Espoon Otaniemessä sijaitseva VTT:n tutkimusreaktori FiR-1 otettiin käyttöön vuonna 1962. Se ehti palvella tutkimusta ja lääketiedettä yli 50 vuoden ajan. Sitä käytettiin niin neutroni- ja reaktorifysiikan tutkimuksessa, koulutuksessa, isotooppianalyyseissä, kuin sädehoitoasemanakin.

Nyt on vuorossa laitoksen käytöstäpoisto, joka täytyy hoitaa tarkasti. Prosessi alkoi jo vuonna 2015, jolloin reaktori suljettiin viimeisen kerran.

Nyt VTT hakee lupaa FiR-1 -reaktorin lopullista purkamista sekä alueen puhdistamista varten. Luvan antaa valtioneuvosto. Ympäristövaikutusten arviointi on jo Työ- ja elinkeinoministeriön hyväksymä.

Laitoksen sulkemisen jälkeen purkamisesta on tehty tarkka suunnitelma. Siinä käydään läpi kuinka reaktori puretaan, laitospaikka puhdistetaan, ja radioaktiiviset aineet käsitellään. Purkujätteiden välivarastointi ja aikanaan loppusijoitus on tarkoitus toteuttaa Suomessa, yhteistyössä ydinvoimayhtiöiden kanssa.

Reaktorirakennuksen nykyinen säteilytaso ei juuri poikkea ympäristöstä. Purkujätteen kokonaismääräksi VTT arvioi "muutamia kymmeniä kuutiometrejä".

Mukana on myös suunnitelma käytetyn ydinpolttoainemäärän loppusijoituksesta. Tämä korkea-aktiivinen jäte kuljetettaneen Yhdysvaltoihin Idahon ydintutkimuskeskukseen. Samoin on tehty useiden muidenkin maiden tutkimusreaktorien kanssa. Käytetyt polttoainesauvat eivät juuri kuumene, sillä niiden jälkilämpö on alle watin. Polttoaine voidaan siksi kuljettaa loppusijoituspaikkaansa kuivasäiliössä. Määrä on hyvin pieni, vain noin 25 kiloa 20-prosenttiseksi rikastettua uraania.

Nyt on Säteilyturvakeskuksen vuoro arvioida, onko suunnitelma riittävä, toteuttamiskelpoinen ja lainmukainen. Käytöstäpoisto pitää suunnitella ja toteuttaa niin huolellisesti, että sekään ei aiheuta ongelmia ihmisille tai ympäristölle. STUKin osalta arviointiin kulunee noin vuosi.

FiR-1 hankittiin aikoinaan Yhdysvalloista. Reaktorin yyppinimi TRIGA on akronyymi sanoista "Training, Research, Isotopes, General Atomics", eli se on suunniteltu juuri yliopistojen tutkimuskäyttöön.

Reaktori on allasjäähdytteinen, eikä se tarvitse erityistä suojakuorta. Laitoksen fissioteho on varsin vähäinen, ainoastaan 250 kW. Uraani-zirkonium-hydridi -seoksella toimiva laitos on suunniteltu niin, että polttoaineen lämmetessä sen ydinreaktiot käyvät koko ajan harvinaisemmiksi. Näin sitä voidaan käyttää huoletta hyvinkin suurella teholla ilman sulamisriskiä – tosin ainoastaan lyhyinä pulsseina. Valmistajan mukaan reaktorilla voidaan saavuttaa jopa 22 gigawatin hetkittäinen teho.

FiR-1 on ensimmäinen ydinreaktori, joka poistetaan Suomessa käytöstä. Samalla pystytään päivittämään ydinlaitoksia koskevia viranomaisohjeita tulevien, paljon suurempien ydinvoimalaitosten poistoa ajatellen. FiR-1 toimii siis yhä vieläkin harjoittelukappaleena.

Suomessa on toiminnassa neljä muuta ydinreaktoria, kaksi Loviisassa ja kaksi Olkiluodossa. Ne otettiin käyttöön vuosina 1977–80 ja ovat käyttöikänsä päässä 2020–2030 -lukujen taitteessa. Ne ovat voimalaitoksia, jotka tuottavat yhteensä noin neljänneksen kaikesta maassamme käytetystä sähköstä.

Uusiakin ydinvoimaloita on tulossa: Olkiluoto-3 päästäneen (viimein) käynnistämään 2018, samana vuonna kuin Hanhikiven ydinvoimalan varsinaisen rakentamisen on tarkoitus alkaa.

FiR-1, tai sen käytetty polttoaine eivät tiettävästi ole missään vaiheessa aiheuttaneet vaaraa ympäristölle tai ihmisille.

Lisätietoa FiR-1 -projektin purkamisesta: VTT, STUK

Suomalainen Iceye sai massiivisen lisärahoituksen satelliittikonstellaatiolleen

Ke, 08/23/2017 - 19:43 Jari Mäkinen
Iceyen satelliitti

Suomalainen uudenlaisten tutkasatelliittien parvea avaruuteen suunnitteleva Iceye on saanut tuntuvan lisärahoituksen hankkeelleen. Ensimmäiset satelliitit ovat jo valmistumassa ja tarkoitus on laukaista jopa kolme satelliittia vuoden kuluessa. Lisärahoituksen turvin Iceye voi kehittää satelliittiaan paremmaksi sekä laukaista niitä enemmän avaruuteen.

Iceyen satelliitit eivät ole pienenpieniä mikrosatelliitteja, vaan hieman suurempia, noin satakiloisia ja kooltaan matkalaukun kokoisia laitteita.

Niiden olennaisin osa on yhtiön kehittämä edistyksellinen ns. synteettisen apertuurin tutka, joka pystyy kuvaamaan alla olevaa maastoa hyvin tarkasti myös pilvien läpi. Näin satelliitit ovat tehokkaampia kuin monet nyt avaruudessa olevat ja suunnitellut näkyvän valon alueella toimivat kaukokartoitussatelliitit.

Mullistavaa satelliiteissa on myös se, että ne tehdään edullisesti suurelta osin vapaasti saatavilla olevista komponenteista. Näin yksittäisten satelliittien hinta on paljon edullisempi kuin perinteisesti avaruuslaitteiden hinta on ollut.

Yhtiön ajatuksena on myydä asiakkailleen kuvia maapallosta nopeasti ja kätevästi, lähes reaaliajassa. Kun avaruudessa on useita satelliitteja, jokin niistä lentää halutun kohdan ylitse parhaassa tapauksessa muutaman tunnin sisällä siitä, kun pyyntö kuvien ottamisesta on saatu. 

Yksinkertaisimmillaan kuvia voisi ostaa jopa nettisivulta: asiakas voisi valita haluamansa kohdan maapallolta ja ostaa siitä kuvia. Käyttökohteet voisivat olla kaikenlaisia oman kesämökin kuvaamisesta aina onnettomuustilanteiden kartoittamiseen hyvin nopealla aikataululla.

Iceyen satelliitit tuottavat tutkakuvia. Tässä lentokoneeseen asennetulla koelaitteistolla otettu kuva.

Iceye on saanut jo tarpeeksi rahoitusta kuuden satelliitin tekemiseen ja niiden lähettäminen avaruuteen alkaa näillä näkymin jo tänä vuonna. Vuoden sisällä avaruudessa pitäisi olla jo kolme Iceyen satelliittia. Mitä enemmän satelliitteja on avaruudessa, sitä nopeammin tietoja saadaan.

Nyt julkistettu 11 miljoonan euron (13 miljoonaa dollaria) rahoitus auttaa osaltaan kehittämään tekniikkaan eteenpäin ja lähettämään useampia satelliitteja. Yhtiö on saanut aiemmin "vain" 4,8 miljoonaa euroa ja yhteensä yhtiö on kerännyt nyt 15,8 miljoonaa euroa (18,7 miljoonaa dollaria) vuodesta 2015 alkaen.

Mukana rahoittajien joukossa on start-up -yrityksiä tukevia riskirahoittajia sekä mm. Tekes ja Euroopan unionin Horizon 2020 -tutkimusrahoitusohjelma.

Jo aiemmin Iceye on sopinut amerikkalaisen Vector Space Systems -yhtiön kanssa aiesopimuksen 21 satelliitin laukaisemisesta yhtiön kehittämillä uusilla raketeilla

Täysikokoinen Iceyen satelliitin mallikappale kiertää Suomea Avaruusrekassa syys-lokakuussa.

Video: USAn pimennys reaaliajassa usealla kameralla kuvattuna + suomalaiskommentteja

Miltä täydellisen auringonpimennyksen huippukohta näytti ja millaisia tuntemuksia se herätti? Tämä video näyttää.

Jari Mäkisen lisäksi videolla ovat Tapani Levola, Anu Kauppi, Ari-Juhani Lukkarinen, Eila ja Ilpo Rouhu, Petri Tynjälä, Ville Nikula, Ralf Lindlöf, Nina Helekorpi, Kalle Arola, Teodora Mihalea, Kaj Niemi ja Mikko Inkinen.

Video: Tunnelmia täydellisestä auringonpimennyksestä USAssa

Tiedetuubin klubi oli seuraamassa eilistä täydellistä auringonpimennystä Yhdysvalloissa Menanin kylässä, Idahossa, aivan pimennyksen täydellisyysvyöhykkeen keskiviivan luona.

Pimennys näkyi siellä erinomaisesti ja paikka oli muutenkin mitä miellyttävin: paikalliset olivat tuoneet kirkon vieressä olevan suuren aukion äärelle myyntipisteitä, joista sai ruokaa ja matkamuistoja.

Bajamajojen rivistö oli varautunut ottamaan vastaan noin 5000 vierasta, mutta paikalla oli vain pari sataa havaitsijaa – mikä oli aivan erinomaista suomalaisryhmän kannalta, koska tilaa riitti ja samalla havaintopaikalla oli kaikki palvelut.

Matka Salt Lake Citystä paikalle sujui varsin hyvin. 19-henkinen seurueemme lähti matkaan klo 5 aamulla paikallista aikaa, pysähdyimme pari kertaa hieman alle 400 km pitkällä ajolla, ja saavuimme perille juuri sopivasti ennen pimennyksen osittaisen vaiheen alkua. Varsinaisia ruuhkia oli matkalla vain kerran, ja sen pahin kohta onnistuttiin välttämään pienellä koukkauksella sivutiellä.

Menanin pohjoispuolella, juuri täsmälleen pimennyksen keskilinjalla, oli sen sijaan tilanne toinen. Yksi Nasan videolähetyksen kameroista oli siellä, ja koska maisemat olivat varsin hienot, oli alueelle pakkaantunut niin aiemmin tulleita telttailijoita ja asuntoautoja kuin myös aamuilla paikalle tulleita havaitsijoita hyvin runsaasti.

Vaikka ympäröivä maisema olisi ollut hieman parempi kuin valitsemallamme havaintopaikalla, oli varmasti parempi tyytyä rauhalliseen paikkaan, vaikka se tarkoitti hieman alle sekuntia lyhyempää täydellistä vaihetta.

kuvakaappaus videolta
kuvakaappaus videolta
kuvakaappaus videolta

Harmiksemme päätimme kuitenkin – suuresta havaitsijamäärästä tietämättöminä – ajaa pois paikalta bussillamme alueella sijaitsevien kahden tulivuorikraatterin kautta: näimme ja koimme näin myös pimennyksen aiheuttaman liikennekaaoksen.

Paluumatka loputtomilta tuntuvassa ruuhkassa Salt Lake Cityyn kesti lähes 14 tuntia ja olimme hotellilla vasta klo 2.30 yöllä. Saimme näin kokea upean pimennyksen lisäksi varmasti erään Yhdysvaltain (kenties koko maailman) suurimman liikennekaaoksen, sillä tilanne oli sama kautta koko täydellisyyslinjan.

Alla on koko pimennys kuvattuna ja nopeutettuna samoilta seuduilta nähtynä. Pimennys oli erityisen kaunis koronassa olleiden purkausten ja erinomaisen hyvin näkyneiden Baileyn helmien sekä timanttisormusilmiön ansiosta.

Aurinko pimenee täydellisesti: Tiedetuubi seuraa ilmiötä paikan päällä Amerikassa

Ma, 08/21/2017 - 08:07 Jari Mäkinen
Täydellinen auringonpimennys

Maanantaina 21. elokuuta nähdään Pohjois-Amerikassa täydellinen auringonpimennys. Keskimäärin 112 km leveä pimennysvyöhyke ylettyy koko mantereen läpi Oregonista Etelä-Carolinaan osavaltioon. Tiedetuubin klubin retkikunta seuraa pimennystä Idahossa.

Täydellinen auringonpimennys on eräs upeimmista luonnonilmiöistä: Kuu hivuttautuu Auringon eteen ja peittää sen kokonaan, jolloin Auringon ympärillä oleva kuumasta kaasusta muodostuva korona leimahtaa näkyviin.

Maisema hämärtyy aavemaiseksi ja pimentyy öisen pimeäksi vähäksi aikaa. Tällä kerralla pimennys on pisimmillään kaksi minuuttia ja 40 sekuntia, joskin koko pimennys kestää lähes kolme tuntia laskien siitä, kun Kuun reuna osuu Auringon kiekkoon aina siihen saakka kun Kuu on jälleen poissa Auringon edestä.

Idahossa Tiedetuubin retkueen havaintopaikalla pimennyksen täydellinen vaihe kestää noin kaksi minuuttia ja 20 sekuntia, ja koko pimennys osittaisen vaiheen alusta sen loppuun kestää kaksi tuntia ja 44 minuuttia. Täydellinen vaihe alkaa klo 11.33 paikallista aikaa, eli klo 20.33 Suomen aikaa maanantaina illalla.

Pimennyksen aikaan Aurinko on noin 50 asteen korkeudessa, eli se on erittäin hyvin havaittavissa.

Sama pätee koko pimennysvyöhykkeeseen, minkä vuoksi amerikkalaismediat ovat olleet viime aikoina aivan hulluina pimennyksestä: vinkkijuttuja sen havaitsemisesta, taustatietopaketteja ja liikenne- sekä sääennusteita on julkaistu erityisesti aktiivisesti parin viikon ajan. 

Kaupoissa täydellisyysvyöhykkeen ulkopuolellakin on kaikenlaista pimennyskrääsää, ja tiedettä sivuavissa museoissa sekä muissa paikoissa on pimennystavaraa tarjolla kautta mantereen.

Kun miljoonat ihmiset tunkevat maanantaina pimennysvyöhykkeelle,  on kyseessä on todennäköisesti Yhdysvaltain suurin yhden päivän aikana tapahtuva ihmisten paikasta toiseen tapahtuva liikkuminen. 

On hyvin harvinaista, että pimennysvyöhyke on näin suurelta osin asutulla ja helposti saavutettavalla alueella.

Vanha havainto koronasta

Mitä iloa pimennyksestä?

Tieteellisesti täydellinen auringonpimennys ei ole enää erityisen tärkeä tapahtuma. Aikanaan tosin oli toisin: ne olivat ainoa ajankohta, jolloin koronaa Auringon ympärillä voitiin tutkia. 

1800-luvun lopulla jo ymmärrettiin pimennyksien aikana tehtyjen havaintojen perusteella, että korona on hyvin kuuma. Sen lämpötila on yli miljoona astetta, joten sen sisältämä kaasu on sähköisesti varautunutta plasmaa. 

Koronassa voi havaita selvästi hohtavan kaasurenkaan lisäksi virtauksia, jotka noudattelevat hyvin Auringon magneettikentän voimaviivoja: mitä aktiivisempi Aurinko on, sitä voimakkaampia virtaukset yleensä ovat. Auringonpilkkujen ympärillä on voimakkaita magneettikenttiä, jotka vaikuttavat myös koronaan. Ensimmäisen kerran tämä todistettiin 1906.

Vuodesta 1936 on koronaa voitu tutkia myös muulloin kuin pimennysten aikaan, sillä Bernard Lyot keksi tuolloin koronagrafin. Se on teleskooppi, joka synnyttää auringonpimennyksen sisällään pienen metallikartion avulla.

Täydellisten auringonpimennysten avulla on voitu myös päätellä Maan pyörimisliikkeen hidastuvan, kun ammoisten pimennysten pimennysvyöhykkeet ovat poikenneet lasketuista. 

Myös suhteellisuusteoria voitiin ensimmäisen kerran todistaa auringonpimennyksen avulla: vuonna 1919 havaittiin, että tähtien paikat Auringon vieressä muuttuivat juuri suhteellisuusteorian ennustamalla tavalla. Kun valo kulkee massiivisen kohteen, kuten Auringon ohi, kääntää massa hieman valonsäteen suuntaa.

Nyt tätäkin voidaan mitata monella muulla tavalla ja paljon tarkemmin.

Tutkijat ovat kuitenkin edelleen hyvin kiinnostuneita täydellisistä auringonpimennyksistä ja tätäkin havaitaan niin erikoisvarustelluista lentokoneista, ilmapalloista kuin maanpäälisillä havaintolaitteillakin.

Tieteellisesti kiinnostavinta on kromosfäärin, koronan alimpien kerrosten havaitseminen, sillä sitä ei saada vieläkään erityisen hyvin näkyviin keinotekoisesti. Kromosfääri välähtää näkyviin punaisena, hyvin ohuena kerroksena aivan Kuun kiekon ulkopuolella.

Toinen kiinnostava asia koskee maapalloa. Pimennys auttaa määrittämään tarkemmin sitä, miten Aurinko lämmittää suoraan Maan pintaa: yksinkertaisesti mittaamalla tarkasti lämpötilan muuttumista pimennyksen aikana saadaan selville Auringon säteilyn suora lämpövaikutus. Samaa mitataan myös korkeammalla ilmakehässä, sillä siellä suora Auringon säteily on tärkein kaasumolekyylejä muokkaava tekijä.

Tiedetuubin pimennysretkikunta poseeraa Arizonan kuuluisalla meteoriittikraatterilla.

Tiedetuubi pimennysvyöhykkeellä

Tiedetuubin klubi on ollut matkalla Yhdysvalloissa jo koko edeltävän viikon. Ennen saapumista pimennysvyöhykkeelle klubilaiset kävivät Flagstaffissa, Arizonassa, tutustumassa Lowellin observatorioon sekä Yhdysvaltain geologisen tutkimuskeskuksen planeettageologian osastoon. 

Lowellin observatorio on kuuluisa ennen kaikkea siksi, että Clyde Tombaugh löysi siellä Pluton. Myös observatorion perustajan Percival Lowellin havainnot Marsin kanavista ovat tunnettuja, joskin myöhemmin ne on todettu hieman väärin tulkituiksi – Marsissa ei ole kanavia.

Planeettageologian juuret puolestaan ovat geologi Gene Shoemakerissa ja Apollo-ohjelmassa. Shoemaker selitti lähellä olevan Arizonan törmäyskraatterin synnyn ja Apollo-astronautit kävivät paitsi kouluttautumassa Kuun tutkimiseen kraatterilla, niin myös Flagstaffin geologit tekivät heille räjäytysten avulla  autenttisen kuumaaston lähelle kaupunkia. 

Koulutusta varten tehtiin myös erityinen Maan olosuhteissa toimimaan viritetty versio kuuautosta. Klubilaiset pääsivät tutustumaan siihen vierailun aikana. Käynnin yhteydessä kerrottiin myös mitä kaikkea Flagstaffin planeettageologit nyt tekevät: he kartoittavat muita taivaankappaleita samaan tapaan kuin geologit Maan päällä ja osallistuvat aktiivisesti moniin avaruuslentoihin Mars-luotaimista asteroideja tutkiviin aluksiin. 

Shoemakerin hengessä laitoksella tutkitaan myös edelleen paljon maapallolla olevia kraattereita.

Flagstaffin jälkeen suomalaisretkikunta kävi katsomassa Arizonan suurta meteoriittikraatteria lähemmin ja jatkoi Grand Canyonin pohjoislaidalle – sille upeammalle puolelle kuuluisaa suurta kanjonia.

Sen tutkimisen jälkeen klubilaiset matkasivat tilausbussillaan Salt Lake Cityyn. Maanantaina aamuvarhain matka jatkuu kohti pimennystä!

Jos havaintopaikalla kännyverkko on tarpeeksi hyvä, näytetään pimennys suorana täällä Tiedetuubin nettisivulla. Joka tapauksessa paras tapa olla mukana pimennyksessä etänä on katsoa Nasan kattavaa pimennysvideoseurantaa

Kuvia klubin matkalta on Tiedetuubin Facebook-sivuilla.

Video: Näin Yhdysvaltain täydellinen auringonpimennys etenee

Yhdysvalloissa tapahtuu nyt maanantaina illalla Suomen aikaa täydellinen auringonpimennys. Video näyttää miten vain noin 120 km leveä pimennys etenee halki koko mantereen Tyyneltä valtamereltä Atlantille.

On harvinaista, että täydellisen auringonpimennyksen täydellisyysvyöhyke osuu näin hyvin asutulle ja helppopääsyiselle paikalle – ei mikään ihme, että kaistaleelle kerääntyy miljoonia ihmisiä seuraamaan tätä kenties upeinta taivaanilmiötä!

Video: Nasa

Missä on paras marjapaikka? Satelliitti kertoo.

Ti, 08/15/2017 - 19:25 Toimitus

Ensimmäistä kertaa Suomessa järjestettävä NASA Europa Challenge -sovelluskilpailu on edennyt loppusuoralle. Tuomaristo valitsi finaaliin yksitoista joukkuetta, joiden sovellukset edistävät avoimen satelliittidatan avulla muun muassa siitepölyseurantaa, helpottavat maastopalojen ennustamista ja auttavat parhaiden marjapaikkojen löytämisessä.

 

Finaaliin valitut sovellukset kehittävät esimerkiksi ympäristön ja säätilojen seurantaa. Tällaisia sovelluksia ovat maastopalojen ennustamista tehostava AWARE Algo Wildfire Analysis & pREdiction (joukkueen kotimaa Iso-Britannia), säätietoa 4D-muodossa esittävä World Weather (Jordania ja Suomi), siitepölymäärien seurantaa helpottava Smart Pollen Monitor (Saksa) ja ilmastonmuutoksen vaikutuksia visualisoiva Agro Sphere (Yhdysvallat).

Maataloutta ja luonnovarojen kestävää käyttöä edistäviä sovelluksia ovat otsikkokuvassakin oleva parhaita marjapaikkoja paikantava Satellio Berry Monitor (Suomi), peltojen optimaalisen kastelun mahdollistava  Farmate (Suomi) ja droneteknologiaa vedenlaadun valvonnassa hyödyntävä Drone Trek (Suomi).

Kaupunkiympäristössä toimivia finaaliehdokkaita edustavat kolmiulotteisia kaupunkikarttoja kehittävä 3D Open Street Map (Italia), kaupunkien historiallista ja tulevaa kehitystä havainnollistava Perfekt City (Suomi), ja erilaiset tapahtumat löytävä Festapp (Suomi). Lisäksi finaalissa kisaa moniulotteisten tiedostojen visualisoinnin mahdollistava MuViAS: Multi Dimension Viz & Analysis Suite (Italia).

”Tänä vuonna on kisassa mukana uusia kiinnostavia ideoita, joista monesta varmasti kuullaan vielä tulevaisuudessa”, sanoo tuomaristoon kuuluva Aalto-yliopiston avaruustekniikan professori Jaan Praks.

”Avaruudesta saatavan satelliittidatan määrä kasvaa koko ajan, ja sen käyttömahdollisuudet ovat lähes rajattomat. NASAn ja ESAn tuottamat satelliittikuvat ovat jopa maksutta kaikkien käytettävissä.  Tämänkin kilpailun sovellukset ovat avointa koodia, joten ne ovat myöhemmin vapaasti hyödynnettävissä.”

Voittaja ratkeaa 31. elokuuta

Suomalaisista ja kansainvälisistä avaruus-, satelliitti- ja ilmastoalan asiantuntijoista koostuva tuomaristo painotti valinnassa erityisesti sovellusten teknistä vaativuutta sekä niiden toteutusta ja toimivuutta. Lisäksi he arvioivat sovellusten käyttöliittymiä, sovelluksia esitteleviä verkkosivua ja ideoiden merkityksellisyyttä. Osallistujien joukko oli kansainvälisin koko viidettä kertaa järjestettävän kilpailun historiassa: 21 tiimin joukossa oli edustajia muun muassa Kiinasta, Intiasta, Espanjasta ja Yhdysvalloista.

NASA Europa Challenge tähtää tänä vuonna elinolojen kehittämiseen metropolialueilla. Suomen valinta kisapaikaksi oli luonteva: avaruusbuumi on synnyttänyt maahamme jo lukuisia alan startup-yrityksiä, ja Euroopan avaruusjärjestö ESA on valinnut Suomen uudeksi avaruuskiihdyttämönsä kotipaikaksi.

”Ja Helsinki on maailmalla tunnettu yhtenä parhaista kaupungeista elää ja asua”, Jaan Praks muistuttaa.

Finalistijoukkueet kutsutaan mentoroitaviksi 29.–30. elokuuta Aalto-yliopiston Otaniemen kampuksella järjestettäviin työpajoihin. Kilpailun voittaja julkistetaan 31. elokuuta Espoossa Nokian Executive Learning Centerissä järjestettävässä tilaisuudessa klo 13 alkaen. Voittajille jaetaan 6 000 euron rahapalkinto.

 

Juttu perustuu kilpailun tiedotteeseen.

Mammutteja ja villipeuroja - kirja esihistoriallisen Suomen eläimistä

Pe, 08/11/2017 - 12:18 Jarmo Korteniemi

Kuinka paljon Suomen alueen eläimistö on muuttunut aikojen saatossa? Varmaa vastausta ei kukaan osaa antaa, mutta tämä kirja tarjoaa kattavan katsauksen siihen, mitä asiasta nykyään tiedetään.

Jääkauden jälkeläiset esittelee Suomesta vuoteen 2011 mennessä löydetyt esihistorialliset lintujen ja nisäkkäiden jäänteet. Mukana ovat kaikki tutkitut löydöt, vähintäänkin pisteinä kartalla.

Kirja lähtee liikkeelle vanhimmista ja eksoottisimmista löydöistä - mammuteista. Näiden jättien jäänteitä on Suomesta löydetty kymmenen kappaletta.

Vanhin suomalainen mammuttilöytö saattaa olla peräti yli 100 000 vuoden takaa. Suurin osa eläimistä on jääkauden jälkeisiä, osa tuttuja ja osa tuntemattomampia. Suomen rannoilla ei esimerkiksi enää grönlanninhylkeitä näe.

Löytöjen avulla voidaan päätellä yllättävän paljon eläinten tulosta Suomeen. Kirja opastaa lukijaa läpi aikakausien, kertoen olosuhteiden muutoksista, ihmisen saapumisesta ja eläinten muuttoreiteistä.

Jääkauden jälkeläiset tarjoaa tietoa geologiasta, luiden tulkinnasta ja monien eläinten ominaispiirteistä. Poikkitieteellisyydestä huolimatta tekijöiden kaikkein vahvimpana osa-alueena paistaa läpi arkeologia. Siinä he tosin sortuvat usein toteamaan faktoina asioita, jotka ovat todennäköisimmin hyvin pitkälle vietyjä tulkintoja. Miksi vaikkapa karhunkynsien löytäminen haudasta kertoisi vainajan pukemisesta karhuturkkiin, eikä muista koriste-esineistä? Miksi kuvassa satunnaisen muotoiselta näyttävä savikikkare tulkitaan juuri karhun pääksi? Tulkinnat voivat olla hyvinkin perusteltuja, mutta lukijalle perusteluja ei kerrota.

Muinaiset ihmisten asuinpaikat ovat kuitenkin avain eläintenkin tutkimukseen. Palanut luu nimittäin säilyy Suomen happamassa maaperässä hyvin, kun taas "raakana" maahan joutuneet eläinten jäänteet maatuvat tehokkaasti. Jälkimmäisiä löytyy vain moukan tuurilla.

Kirja on visuaalinen ja teksti on suurelta osin moitteetonta. Mutta kirjaan mahtuu myös monenlaisia outouksia ja ongelmia.

Jää hyvin epäselväksi, kenelle Jääkauden jälkeläiset oikein on suunnattu. Lukija tuntuu monin paikoin unohtuneen.

Kirjaa on usein vaikea seurata. Kieli on ajoittain tieteellistä ja kerronta muuttuu usein ja yllättäen, yleisestä yksityiskohtaiseen ja takaisin. Toisinaan teksti tuntuu vain luettelolta, jossa vilisee tukahduttavasti löytöpaikkoja ja -paikkakuntia. Moiset asiat voisi esittää taulukossa.

Sinne tänne nomparellien lailla ripotellut faktaosiot ovat vain harvoin kytköksissä leipätekstin silloiseen asiaan. Jotkut tieteelliset termit, metodit ja tulkintojen perusteet selitetään vasta kauan sen jälkeen, kun niistä on ensi kerran puhuttu. Toiset taas jäävät täysin vaille selitystä.

Teksti kannattaa kuitenkin lukea ajatuksella. Mielenkiintoisia tiedonmuruja jätetään usein kappaleiden loppuun ja/tai sivulauseisiin. Nämä sivukommentit tuppaavat avaamaan aihepiiriä muuta tekstiä paremmin.

Monet kartat ja kuvat näyttävät aivan toisiin tarkoituksiin tehdyiltä, eikä niiden sopivuutta kirjaan tai kulloiseenkin kappaleeseen ole mietitty loppuun asti. Ne tuntuvat joskus olevan jopa suoranaisessa ristiriidassa viereisen leipätekstin kanssa. Esimerkkinä vaikkapa kaikkein vanhimmista (11 200 - 8 800 v vanhoista) hyljelöydöistä kertova kappale, jossa kerrotaan otusten jäänteitä löytyneen lähinnä etelärannikon asuinpaikoilta. Oheen liitetty kartta on kuitenkin pullollaan arkeologisia löytöpaikkoja Rovaniemi-Joensuu -linjan länsipuolella. Muutaman minuutin omatoimisella tutkimuksella selviää, että siinähän näytetäänkin löydöt kaikilta ajanjaksoilta, eikä vain luvussa käsitellyltä aikaväliltä. Ja ehkä osaa löytöpaikoista ei sitten pidetä asuinpaikkoina..? Kuvatekstit ja merkkienselitteet auttaisivat paljon, mutta parasta olisi juuri kuvien räätälöiminen tekstiä tukevaksi.

Kirjan lopussa kaikki löydöt käydään onneksi läpi vielä eläinlajeittain, joskus lajiryhmittäin. Ikävä kyllä valtaosa löydöistä näytetään vain kartalla päällekäin menevillä pisteillä, eikä niistä siksi voi etsiä käsiinsä mutään lisätietoa. On sääli, ettei mukana ole taulukkoa, jossa kerrottaisiin kaikista löydöistä samat tiedot systemaattisesti. Jos ei muuta, niin edes löytöpaikka ja -numero.

Kirjan alussa kerrotaan, että luuanalyysiraportit (eli käytännössä kaikki nuo puuttuvat tiedot) löytyisivät netistä museoviraston rekisteriportaalista. Annettu linkki on kuitenkin ollut vanhentunut jo kirjan ilmestyessä, sillä ohjeet eivät toimineet. Oikea (tämänhetkinen) tietokanta löytynee osoitteesta www.kyppi.fi. Tai sitten jostain muualta.

Suoranaisia virheitäkin kirjassa on. Mammutin hampaan löytöajaksi sanotaan samalla sivulla sekä 1700- että 1800-luku. Lapsukset ovat ymmärrettäviä, mutta vähentävät kirjan uskottavuutta.

Kirjan pomppivuudesta johtuen opus ei soveltune etenkään nuorelle yleisölle, paitsi ehkä selailuopuksena, tai aiheesta harvinaisen paljon innostuneille.

Kirjan tarjoamiin tietoihin ei siis kannata suoriltaan uskoa. Lukijan ei myöskään kannata odottaa sen olevan tyhjentävä selonteko tähänastisista eläinlöydöistä. Kirja on kuitenkin hyvä astinlauta aihepiiriin.

Jääkauden jälkeläiset on puutteistaan huolimatta mielenkiintoinen tietokokoelma maamme alueella muinoin eläneistä eläimistä. Siksi suosittelemmekin kirjaa lämpimästi kaikille, joilla on jotain perustietoja arkeologiasta, fossiileista - tai vastaavasti kärsivällisyyttä alkaa opiskelemaan aihepiiriä kirjan herättämien kysymysten pohjalta.

Nimi: Jääkauden jälkeläiset - Suomen lintujen ja nisäkkäiden varhainen historia
Kirjoittajat: Pirkko Ukkonen ja Kristiina Mannermaa
240 sivua (josta 180 leipätekstiä ja 40 karttoja)
Julkaistu: 2017 (Museoviraston julkaisuja #8)
ISBN: 978-951-616-281-5

Video: tältä näyttää Hyperloopin kyydissä

Supernopea tunnelijuna Hyperloop otti yhden askeleen lähemmäksi toteutumistaan heinäkuun lopussa, kun laitteen testiversio kiisi 310 kilometrin tuntinopeudella täysikokoisella koeradalla Nevadassa.

Hyperloop on SpaceX- ja Tesla-yhtiöistään tunnetun Elon Muskin esittämä idea tunnelin sisällä nopeasti kulkevista kyytivälineistä, joilla voitaisiin matkustaa paikasta toiseen lähes äänen nopeudella.

Leijuvat kapselijunayksiköt viilettäisivät putken sisällä kuten lähetykset ammoisissa putkipostissa, paitsi että putkiposti toimi ilmanpaineella, mutta Hyperloopissa tunnelin sisällä on vain hyvin vähän ilmaa. Niinpä siellä ei ole juuri nimeksikään ilmanvastusta, joten meno on vauhdikasta ja varsin vähän energiaa vaativaa.

 

Erilaisia ideoita tällaisista tunnelissa kulkevista sukkulamaisista vaunuista on esitetty useitakin historian hämyssä, mutta Muskin ehdotus on ensimmäinen konkreettisesti toteutettavaksi edennyt. 

Musk yhtiöineen on hankkeessa mukana eri tavoilla, mutta varsinaista Hyperloop-systeemin kehitystä tehdään myös muualla. Pisimmällä on Hyperloop One -niminen yhtiö. Sillä on Nevadassa puoli kilometriä pitkä pätkä täysikokoista Hyperloop-putkea, jonka sisällä se on ajanut täysikokoisen sukkulajunan testikappaleella.

Tunnelin sisällä vallitsee ilmanpaine, joka vastaa painetta noin 60 kilometrin korkeudessa. Ilmaa on siis hyvin vähän.

Tuorein testeistä oli 29. heinäkuuta, jolloin laite saavutti 310 kilometrin tuntinopeuden. XP-1 -testisukkula kiihdytti ensin 300 metriä ja jarrutti menoaan loput 200 metriä. Tässä testilaitteessa ei ole vielä matkustamoa tai kuoria, mutta siinä on kaikki täysikokoisen junayksikön kulkemiseen vaadittavat laitteet magneettilevitaatiosysteemistä tyhjiöpumppuihin.

Nyt käynnissä olevat kokeet alkoivat toukokuussa ja jatkuvat vielä ainakin siihen saakka, kun nopeus saadaan nostettua noin 400 kilometriin tunnissa. 

Suunnitelman mukaan varsinaiset käyttöön tulevat junat kiitävät yli kaksinkertaisella nopeudella, yli 800 km/h.

Hyperloopin podi

Siinä missä Hyperloop One on keskittynyt ainakin toistaiseksi tunneliin ja junayksikön vaatimaan tekniikkaan, on SpaceX järjestänyt kilpailun yliopistojen välillä varsinaisten junayksikköjen suunnittelusta etenkin matkustajien mukavuutta silmällä pitäen.

Voi nimittäin olla, että teknisiä haasteita suurempi ongelma tulee olemaan se, että matkustajat pelkäävät tulla hurjalla vauhdilla suljetun putken sisällä kulkeviin, kenties hieman ahtaisiin menopeleihin. Todellisissa junissa halutaan erityisesti välttää sitä, että matkustajat näkisivät ympäristöään juuri tuolla tavalla kuin yllä oleva video näyttää.

Kilpailu on edennyt jo toiseen vaiheeseen, ja opiskelijaryhmät kerääntyvät nyt elokuun lopussa Kaliforniaan SpaceX:n päätoimipisteen luokse ottamaan mittaa toisistaan koeradalla. Tämä rata ei ole täysikokoinen, eivätkä sen sisällä liikkuvat junatkaan ole siten lopullisen kokoisia. Ne vastaavat "lopullisia" kuitenkin toiminnallisesti.

Alla on video viime tammikuulta, kun ryhmät testasivat koeradalla laitteineen edellisen kerran.

Murtajalla Luoteisväylän läpi Suomi 100 -hengessä

Ke, 08/09/2017 - 17:19 Toimitus
Nordica ja matkan logo

Suomen sataa vuotta juhlitaan hyvin erilaisin hankkein, mutta vain muutamassa on tiede tai tekniikka mukana. Yksi näistä harvoista tiedehenkisistä hankkeista oli tutkimusmatka läpi Luoteisväylän.

Monitoimimurtaja Nordica puski läpi Luoteisväylän heinäkuun aikana.

Alus lähti Kanadan Vancouverista heinäkuun 5. päivä ja saapui Grönlannin Nuukiin 29. heinäkuuta. Kyseessä ei ole suinkaan ensimmäinen kerta, kun laivalla on ajettu Tyyneltämereltä Pohjois-Amerikan pohjoispuolitse Kanadan arktisen saariston läpi Atlantille, mutta suomalaisvoimin tehty tutkimusmatka on aikaisin koskaan tehty Louteisväylän purjehtiminen – normaalisti reitti on kulkukelpoinen vasta myöhemmin kesällä.

Se, että Nordica onnistui matkassaan, johtuu tietysti laivasta ja sen erinomaisesta miehistöstä, mutta ilmastonmuutos avusti matkaa huomattavasti.

Kyseessä on monitoimimurtaja Nordican toinen matka halki Luoteisväylän ja se tehtiin yhteistyössä Kanadan rannikkovartioston, Kanadan liikenneministeriön sekä paikallisten toimijoiden sekä yhtiöiden kanssa.

Tavoitteena edistää vuoropuhelua arktisen tutkimuksen mahdollisuuksista

Noin kaksi vuotta sitten Arctia Oy kutsui yli 100 yliopistoa ja tutkimuslaitosta ympäri maailman suunnittelemaan ja toteuttamaan Arctic 100 -tutkimusmatkahanketta.

Toimintamalli oli tutkimusmaailmalle uusi, sillä yleensä kansainväliset tutkimusmatkat muilla kuin erityisillä tutkimusaluksilla ovat hyvin harvinaisia. 

Arctia haluaa olla kehittämässä tätä uudenlaista toimintamallia, jossa kansainvälinen tutkimus polaarialueilla hyödyntää muutaman näillä alueilla toimintakykyisen kansallisen tutkimusaluksen lisäksi kaikkia maailman jäänmurtajia. Sen lisäksi, että tutkijoita otettaisiin nykyistä enemmän mukaan alusten siirtoajoille, varustamot voisivat tulevaisuudessa rahdata aluksia joustavasti kansainvälisten tutkimuslaitosten yhteisiin tarpeisiin. 

Kyseessä oli itse asiassa Nordican siirtoajo, joka pystyttiin näin käyttämään hyväksi myös tutkimusmielessä. 

Retken osanottajia tähyämässä

Aikaa ideasta matkan toteuttamiseen ei kuitenkaan ollut paljon. Niinpä matkan tärkein anti oli nyt uuden konseptin testaaminen sekä yhteyksien luominen tutkimusmaailman, merialan ja alkuperäiskansojen välille. 

Arctia Oy ja Ilmatieteen laitos kehittivät tutkimusmatkan aikana uudenlaista ennustepalvelua. Ilmatieteen laitos lähetti Nordicalle matkan aikana meteorologin ja meriasiantuntijan koostaman 3-5 vuorokauden sää-, jää- ja meriennusteen Beringin salmen ja Nuukin välillä kolmena päivänä viikossa. Nordica puolestaan toimitti alueelta sää- ja jäähavaintoja sekä palautetta ennusteista.

”Tämä on osa arktisten palveluidemme kehittämistä. Turvallinen ja kestävä toiminta arktisilla merialueilla vaatii erityistä osaamista”, totesi Ilmatieteen laitoksen ryhmäpäällikkö Antti Kangas.

Arktisen alueen kattava meteorologinen yhteistyö on yksi kärkiteemoista Suomen puheenjohtajuuskaudella Arktisessa neuvostossa 2017–2019.

”Niin arktisen alueen kuin Etelämantereenkin tutkimus on tärkeää ilmastonmuutoksen ja muiden maailmanlaajuisten haasteiden ratkaisemiseksi. Silti monilla polaarialueiden tutkimisesta kiinnostuneilla valtioilla ja tutkimuslaitoksilla ei ole näiden alueiden tutkimuksessa tarvittavaa kalustoa. Arctia Oy haluaakin tarjota uutta toimintamallia kalustonsa ja osaamisensa hyödyntämiseen kansainvälisessä polaaritutkimuksessa”, kertoo puolestaan Arctian viestintäpäällikkö Eero Hokkanen.

Kuvia ja tunnelmia Arctic 100 -tutkimusmatkalta on Facebookin blogissa Arctic100Expedition sekä Instagramissa (@arctia_ltd) ja Twitterissä (@ArctiaLtd) aihetunnisteilla #Arctic100 ja #Nordica. Blogi toimi miehistön ja muiden matkalle osallistuvien matkapäiväkirjana.

​Juttu perustuu Arctian tiedotteeseen. Kuvat ovat tutkimusmatkan Facebook-sivulta. 
(Tekstissä mainittiin aluksi hankkeen saaneen Suomi 100 -avustusta, mutta näin ei ole. Kyseinen kohta jutusta on poistettu.)

Tutkimusmatkan ryhmäkuva otettiin matkan pohjoisimman pisteen tuntumassa, 74 leveyspiirin pohjoispuolella, Peel Soundista Barrow Straitiin tullessa, kun laiva oli viimeistä erää merijään ympäröiminä. Sattumalta tuohon ajankohtaan sattui reissun ainoa sateinen päivä, mikä näkyy muutamana vesipisarana kameran linssissä.

Perlan 2 – hullu hanke lentää purjekoneella stratosfääriin

Perlan 2 on kunnianhimoinen hanke, jonka tarkoituksena on nousta hyvin korkealle ilmakehässä purjekoneella: tavoitteena on rikkoa tämänhetkinen purjekoneiden korkeusennätys 15 460 metriä. 

Korkeus on stratosfäärin alaosissa korkeudessa, missä muun muassa Concorde aikoinaan lensi – ja korkeus, missä lentäminen liitämällä on erittäin vaikeaa. 

Perlan on amerikkalainen hanke, mutta eurooppalainen Airbus tukee sitä voimakkaasti. Hankkeessa on kehitetty jo kaksi erilaista liitokonetta, joista tuoreempi yritti rikkoa ennätystä jo viime vuonna, mutta ei onnistunut. Kyse ei ollut vain koneesta tai sen lentäjistä, vaan myös olosuhteista, sillä liitolentäminen stratosfääriin vaati täydelliset olosuhteen ja juuri sopivat nostavat virtaukset.

Niitä varten tiimi on mennyt jälleen Argentiinaan, mistä se yrittää ennätyslentoa uudelleen näinä päivinä. 

Lentäjät Jim Payne,Morgan SandercockTim Gardner ja Miguel Iturmendi ovat lentäneet kahden tiimeinä paineistetulla purjekoneellaan El Calafatessa, Argentiinassa tähän mennessä vähän alle 10 kilometrin korkeuteen. Kone on osoittautunut hyväksi ja pystynee nousemaan ylemmäksikin, jos ja kun sää vain sallii.

Ennätyslentoyrityksen paikaksi on valittu Argentiinan eteläosien Patagonia, koska siellä vuoristossa syntyvät virtaukset nousevat stratosfääriin saakka näin alkukeväisin. Eteläisellä pallonpuolella talvi on juuri vaihtumassa kevääksi.

TIimi on varautunut olemaan paikalla kahden kuukauden ajan odottamassa sopivia olosuhteita.

Tarkoituksena on paitsi rikkoa ennätys, niin myös kehittää lentokoneen aerodynamiikkaa ja tehdä tutkimusta. Lentokoneessa on mukana mittalaitteita, joilla saadaan lisätietoa ilmakehästä ja lento sinällään lisää tietämystä vuoristoalueiden nousevista ilmavirtauksista. Niitä ei tunneta toistaiseksi hyvin ja ne voivat osaltaan vaikuttaa kaasujen sekoittumiseen ilmakehässä.

Yleensä ilmakehätutkimusta näillä korkeuksilla tehdään ilmapalloilla, mutta lentokone on parempi, koska se on helpommin ohjattavissa haluttuun paikkaan ja se pystyy kiertelemään samalla alueella. Lentokone voi tuoda näytteitä alas myös kätevästi ja nopeasti.

Lentojen aikana tutkitaan myös korkealla lentämisen vaikutuksia pilotteihin. 

Hanketta voi seurata twitterissä nimellä @PerlanProject, Facebookissa sivulla www.facebook.com/perlanproject ja netissä sen omilla sivuilla osoitteessa www.perlanproject.org.

Tänä vuonna koneen ohjaamoon voi myös hypätä mukaan virtuaalisesti: http://bit.ly/VirtualPerlan2.

Tapaus Neymar Jr. ja Venus

Avaruushankkeita ja urheiluviihdebisnestä ei oikein voi rinnastaa, mutta tehdäänpä silti niin.

Ranskassa (ja toki muuallakin) ollaan viime päivinä kohuttu jalkapalloilija Neymar juniorin hankkimisesta pariisilaiseen Paris Saint-Germain -joukkueeseen. Pelaajakuuluisuuden siirtosumma FC Barcelonasta oli ennätykselliset 222 miljoonaa euroa, ja lisäksi Neymar saa nyt palkkaa vuodessa samoin ennätykselliset 30 miljoonaa euroa.

Koska rahat eivät ole julkisia varoja, vaan tulevat seuran omistavien qatarilaisten taskuista, ei määrällä sinällään olekaan merkitystä. Todennäköisesti emiirit tekevät tällä jopa voittoa, sillä Pariisissa on tapauksen tiedottamisen jälkeen myyty Neymarin nimellä varustettuja pelipaitoja kuin siimaa. Kuuleman mukaan paidasta, jonka valmistus maksaa noin kymmenen euroa, saa pulittaa seuran putiikissa 140 euroa.

Tapauksesta uutisoitaessa summia on lähinnä ihasteltu, sillä onhan normaalia, että urheilujournalismissa fanitus ajaa kaiken edelle. Sen sijaan avaruushankkeista kerrottaessa raha nousee oikeastaan aina esille aivan toisessa mielessä: suuren yleisön mielestä avaruuslennot ovat ällistyttävän kalliita ja tätä mielikuvaa halutaan jostain syystä pitää yllä.

Kyllähän historiaan mahtuu paljon todella kalliita avaruushankkeita alkaen kansallisen kunnian nimissä tehdyistä avaruusajan alun lennoista Hubblen avaruusteleskooppiin sekä syyskuussa päättyvään Cassini-luotaimen tutkimusmatkaan Saturnuksessa. Ne ovat kuitenkin vain ääripää, ja miljardiluokan hintalappuja kauhisteltaessa kannattaa muistaa, että suurin osa rahasta on mennyt työhön – joka lisäksi on hilannut tekniikan tasoa ja tietämystämme maailmasta paremmiksi.

Avaruus on tulossa myös vähitellen raharikkaiden sijoituskohteeksi, kun sieltä on viimein saatavissa voittoja. Ja kun avaruusturismi jossain vaiheessa pääsee vielä alkuun, niin suuri yleisö tulee myös paremmin mukaan – ja kenties jossain vaiheessa kiertoradalla pelataan jalkapallon painottomuuteen sopivaa versiota.

Mutta takaisin hintaan ja tähän päivään. Jos otetaan tämä 222 miljoonaa euroa, joka on siis pelkkä yhden jalkapalloilijan siirtomaksu ja verrataan sitä avaruushankkeisiin; mitä kaikkea samalla summalla olisi saanut?

2 x Venus Express
Euroopan avaruusjärjestön Venus-luotain maksoi noin 85 miljoonaa euroa, eli niitä summalla saisi kaksi. Luotain oli tosin hyvin edullinen siksi, että se käytti Mars Express -luotaimen mallia ja osin sitä varten tehtyjä laitteitakin. Se puolestaan maksoi noin 300 miljoonaa euroa.

3 x Mars Orbiter Mission (intia)
Intialaisten Mars-luotain maksoin noin 62 miljoonaa euroa, joten näitä siirtosummalla saisi helposti kolme.

Genesis
Nasan aurinkotuulesta näytteen hakenut ja Maahan sen tutkimuksia varten palauttanut lento maksoi 224 miljoonaa euroa, eli sen saisi summalla hieman tinkimällä.

NEAR Shoemaker
Asteroidi Erosta tutkineen Nasan luotaimen saisi summalla kevyesti, koska sen hinta oli noin 190 miljoonaa euroa.

Hayabusa
Japanilaisten kunnianhimoinen asteroidilento maksoi puolestaan 127 miljoonaa euroa. Nyt matkassa oleva luotaimen uusi versio Hayabusa 2 jotakuinkin saman verran, eli kummankin hinta olisi lähes katettu siirtosummalla.

2 x SMART-1
ESAn pieni kuuluotain maksoi noin 110 miljoonaa euroa. Niitä saisi siis kaksi.

CryoSat 2
ESAn satelliitti, joka kartoittaa maapallon jäätiköitä, maksoi 140 miljoonaa euroa.

Kaikkien avaruusturistien lennot avaruusasemalle
Avaruudessa on käynyt tähän mennessä seitsemän avaruusturistia, jotka ovat maksaneet lennon avaruuteen Sojuz-aluksella itse. Heistä yksi, Charles Simonyi teki jopa kaksi lentoa. Hinnat ovat olleet 17 miljoonasta 33 miljoonaan euroon. Kun kaikki lasketaan yhteen, saadaan summaksi 178 miljoonaa euroa.

4 x Falcon 9 -kantoraketin laukaisu
Yksi raketin laukaisu maksaa (ilman uudelleenkäytettävyydestä vielä tulevia alennuksia) 52 miljoonaa euroa. 

2200 x Cubesat
Yhden yksinkertaisimman nykyisin tehtävän satelliitin, niin sanotun yhden yksikön cubesatin, tekeminen ja laukaisu maksaa noin 100 000 euroa. Näitä saisi siis helposti yli kaksi tuhatta.

2 x maailman suurin optinen teleskooppi
Maailman suurin näkyvän valon alueella toimiva kaukoputki on Kanarian saarilla oleva Gran Telescopio Canarias. Sen hinta oli noin 97 miljoonaa euroa. 

Ja vielä vertailun vuoksi:

Airbus A350 (alennuksella)
Uuden huippumodernin laajarunkolentokoneen hinta on keskimäärin 233 miljoonaa euroa. Pienemmän A320:n saa noin 86 miljoonalla.

Viking Grace (melkein)
Turun ja Tukholman välissä seilaava, vuonna 2013 liikenteeseen tullut autolautta maksoi noin 240 miljoonaa euroa.

Seitsemäsosa Suomen Terveydenhuollon tietojärjestelmien uusimiskustannuksista 
Uusiminen maksaa noin 1,5 miljardia euroa ja hankkeeseen on jo nyt käytetty (suurelta osin turhaan) rahaa Mars-laskeutujan hinnan verran.

2 x Suomen jääkiekkoliigasta. 
Liigan joukkueiden  yhteiskulut ovat yli 92 miljoonaa euroa. Vaikkausliigan vastaava summa on 18 miljoonaa euroa.

Tuorlan observatorion lasinen tähtitaivas digitoidaan

Pe, 08/04/2017 - 16:32 Jari Mäkinen
Valokuvauslevyjä

Tuorlan observatorion arkistossa on 10 965 vuosien varrella kertynyttä lasivalokuvalevyä. Niitä ollaan nyt muuttamassa numeeriseen muotoon tšekkiläismenetelmin ja -voimin.

Käytännössä kaikki tähtivalokuvat otettiin aina digitaalisten CCD-kameroiden tuloon saakka herkille lasilevyille, eli tämä nykynäkökulmasta antiikkinen menetelmä oli käytössä vielä 1980-luvulla monissa observatorioissa. 

Näin oli myös Tuorlan observatoriossa sekä sen edeltäjässä, Turun keskustassa sijaitsevassa Iso-Heikkilän tähtitornissa.

Turkulaistutkijat kuvasivat innokkaasti taivasta pikkuplaneettoja etsiessään, ja tässä työssä he olivatkin maailman huippua: 1930-luvulta alkaen Turussa ja Tuorlassa löydettiin professori Yrjö Väisälän johdolla kahden vuosikymmenen aikana yli 800 pikkuplaneettaa ja 6–7 pyrstötähteä.

"Määrä oli huikea", sanoo apulaisprofessori Aimo Sillanpää. "Koko muun maailman tutkijat löysivät yhteensä saman määrän pikkuplaneettoja."

Työ tarkoitti sitä, että Tuorlan arkistoihin kertyi tuhansia ja tuhansia valokuvauslevyjä. Kustakin kohdasta taivasta otettiin useita kuvia, joita verrattiin toisiinsa. Kun eri aikaan otetuissa kuvissa tähdet pysyivät paikallaan, tulivat asteroidit ja komeetat helposti esiin liikkuneina kohteina.

1930- ja 1950-lukujen välisenä aikana Iso-Heikkilän observatoriossa oli laajakuvakulmainen Schmidt-teleskooppi, mistä Väisälä kehitti oman versionsa. Sen näkökenttä oli peräti seitsemän astetta.

Sillanpään mukaan nykyisin lähes kaikissa maailman observatorioissa käytössä oleva Schmidt-teleskooppi pitäisi olla nimeltään Väisälä-teleskooppi.

"Väisälä oli esitellyt luennolla teleskoopin rakenteen, mutta sen toteutti Bernhard Schmidt. Väisälä ei kuitenkaan tehnyt teleskoopista julkaisua eikä vaatinut siitä kunnia itselleen, joten maailmalla teleskooppi tunnettiin Schmidtin nimellä."

Schmidt oli syntyjään virolainen, mutta työskenteli pääasiassa Saksassa.

Kun Tuorlan observatorio otettiin käyttöön vuonna 1952, jatkuivat havainnot ja kuvien ottaminen siellä. Väisälän tekemien kaukoputkien lisäksi Tuorlassa taivasta kuvattiin ahkerasti Tapio Korhosen rakentamalla teleskoopilla, jonka läpi kuvattiin noin 500 lasilevyä. 

Kuvat  talteen!

Vaikka lasi säilyy erinomaisesti, eivät niille tallentuneet kuvat kuitenkaan kestä aikaa.

Kooltaan tyypillisesti 12 x 12 cm oleville lasilevyille valotetut kuvat ovat hiipuneet ja tulevat häviämään kokonaan.

Niinpä ne päätettiin digitoida.

Tähän rekrytoitiin tšekkiläiset René ja Lukas Hudec, jotka ovat kehittäneet hyvän ja tehokkaan menetelmän siirtää lasiset valokuvat digitaaliseen muotoon.

"Kuvat ovat jatkossa netin kautta vapaasti kaikkien tutkijoiden käytettävissä", Sillanpää lupaa.

Vanhojen kuvien siirtäminen digitaaliseen muotoon ja antaminen kaikkien maailman tutkijoiden käyttöön tuottaa yllättäviä löytöjä, sillä vanhojen havaintojen käsittely uudelleen ja yhdistäminen muihin havaintoihin tuo usein uusia ja kiinnostavia löytöjä – sellaisia, joita väsyneet tähtitieteilijöiden silmät eivät aikaan huomanneet. 

Joskus vanhoista, digitoiduista kuvista löytyy myös nyt tehtyjä löytöjä tukevia havaintoja.

Niinpä vanhoja, nyttemmin digitoituja yhteiskäytössä olevia havaintoja kutsutaankin usein virtuaaliseksi observatorioksi, jonka avulla päästään käsiksi nykyisen tähtitaivaan lisäksi myös siihen, mitä taivaalla on tapahtunut historiassa. 

Tekstin pohjana on Turun yliopiston aiheesta tekemä uutinen. Kuvat ovat Tuorlan observatorion.

Kolmas paikka mukaan painovoima-aaltojen metsästykseen

Pe, 08/04/2017 - 10:41 Jari Mäkinen
Virgo

Painovoima-aaltojen havaitseminen tapahtuu toivottavasti helpommin ja tarkemmin tulevaisuudessa, kun tähän saakka ainoat varmat havainnot tehnyt amerikkalainen LIGO-observatorio saa mukaansa nyt eurooppalaisen Virgon.

Painovoima-aaltoja, eli gravitaatioaaltoja on havaittu tähän mennessä varmasti kolme kertaa. Tuorein löytö julkistettiin viime tammikuussa, ja tuo tapaus – kuten aiemmatkin – oli kahden massiivisen mustan aukon yhteentörmäys, joka lähetti avaruuden geometriaa ravistaneen aallon ympärilleen.

Aallot havaittiin kahdessa LIGO-havaintosysteemiin kuuluvassa observatoriossa Yhdysvalloissa, mutta mukana havaintojen käsittelyssä oli tutkijoita myös Euroopan puolella olevasta Euroopan gravitaatioaalto-observatoriosta EGO:sta.

Sen oma havaintolaite on Pisan luona Italiassa sijaitseva Virgo. Nyt Virgo on liittynyt myös mukaan aaltojen etsintään.

Virgo on hyvin samanlainen kuin kaksi LIGO-havaintolaitetta: siinä on kaksi kolme kilometriä pitkää tunnelia, joiden sisällä kulkee erittäin tarkasti suunnattu ja mitattu lasersäde. Säde jaetaan kahteen osaan, yksi kumpaankin tunneliin, joissa peilien avulla sädettä singautellaan edes takaisin niin monta kertaa, että valon mielestä se kulkee kolmen kilometrin sijaan sata kilometriä suuntaansa.  

Jos ja kun gravitaatioaalto kulkee observatorion läpi, se venyttää avaruuden geometriaa sen verran, että tämä äärimmäisen pieni pituuden muutos voidaan havaita, kun lasersäteitä verrataan interferometrisesti keskenään. 

Olennaista hyvin heikkojen gravitaatioaaltojen tulkinnassa on se, että yhden ainoan havaintolaitteen tulokseen ei voi luottaa. Paikallisia häiriöitä on niin paljon, että todeliset havainnot hautautuvat niiden alle.

Havainto on luotettava vain silloin, kun samanlainen havainto saadaan erikseen kahdessa paikassa siten, että havainnon tekoaika poikkeaa toisistaan täsmälleen sen verran mitä aallolta kestää kulkea paikkojen välisen matkan verran.

Kuvassa kolmas varmistettu painovoima-aaltohavainto. Sama, teoreettisiin laskelmiin täysin sopiva havainto tehtiin kahdessa paikassa siten, että havaintoajat vastaavat aallon kulkuaikaa havaintolaitteiden välissä.

Kun LIGO:n kahden havaintopaikan lisäksi mukaan saadaan nyt reaaliajassa niiden kanssa havaintoja tekevä kolmas observatorio, voidaan havaintoja tehdä aiempaa luotettavammin ja paremmin. Lisäksi kolmas, selvästi edellisistä erillään oleva paikka auttaa selvittämään paremmin mistä suunnasta taivaalla aalto on peräisin. 

LIGO aloitti nykyisen havaintokautensa huollon ja parannusten jälkeen viime marraskuussa. Tämä kausi päättyy nyt elokuun 25. päivänä, ja eurooppalainen Virgo on mukana tämän loppuajan elokuussa.

Tarkoituksena on tässä vaiheessa ennen kaikkea testata sitä, miten kolmikko pystyy toimimaan yhdessä ja kuinka vastaisuudessa havaintoja voitaisiin tehdä rutiininomaisesti kolmella havaintolaitteella samanaikaisesti.

Myös Intiaan on suunnitteilla samankaltainen painovoima-aaltoja havaitseva laite, mutta sen rakentaminen ei ole vielä alkanut.

Virgon toimintaa voi seurata reaaliajassa observatorion nettisivuilla.

Vector onnistui – nanosatelliittien laukaisuun tulee yksi pikkuraketti lisää

To, 08/03/2017 - 20:18 Jari Mäkinen

Nanosatelliittiboomi tuo mukanaan nanorakettien vyöryn. Tuorein sellainen – nimeltään Vector – teki juuri toisen lentonsa Yhdysvalloissa. Tämä on hyvä uutinen myös suomalaiselle, orastavalle nanosatelliittialalle, koska näin niidenkin tuotteen saadaan tulevaisuudessa kätevämmin taivaalle.

Pienet nanosatelliitit ovat nyt hip ja pop, koska tekniikan kehittymisen ansiosta niillä voidaan tehdä paljon sellaisia asioita, mihin vaadittiin aikanaan suuri ja kallis satelliitti. Niinpä sellaisia laukaistaan avaruuteen koko ajan yhä enemmän, mutta tarvetta olisi vieläkin suuremmalle määrälle laukaisuita.

Käytännössä kaikki nanosatelliitit lähetetään matkaan nykyisin suurilla kantoraketeilla isojen satelliittien ohessa. Kun pääasiallinen kyytiläinen on saatu onnellisesti radalleen, pullautetaan pienet satelliitit ulos laukaisulaatikoistaan.

Tämä tarkoittaa sitä, että pikkusatelliittien laukaisut tehdään kokonaan isompien satelliittien ehdoilla ja tapaan.

Nanosatelliitit olisi kuitenkin kätevämpää laukaista avaruuteen pienemmillä kantoraketeilla, jotka on räätälöity pienille satelliiteille. Siksi maailmalla kehitetään useitakin erilaisia uusia pikkukantoraketteja, jotka tähtäävät juuri nanosatelliittien laukaisuun.

Yksi tällainen on keväällä ensilentonsa tehnyt Electron, ja toinen lupaava tulokas on tänään jo toisen kerran* lentänyt Vector.

Vectorista suunnitellaan tehtäväksi kaksi versiota, 12 metriä korkea R-versio ja 16 metriä korkea H-versio. Pienempi voisi vielä 66 kg massaltaan olevan lastin matalalle kiertoradalle ja suurempi 160-kiloisen hyötykuorman.

Vector R voisi aloittaa kaupalliset lennot jo ensi vuonna ja sellaisia voidaan periaatteessa laukaista jopa sata vuodessa. Siis noin kaksi viikossa. 

Vector H puolestaan olisi valmis tositoimiin vuonna 2019 ja niitä voitaisiin laukaista 25 vuodessa, eli karkeasti laskettuna joka toinen viikko.

Tänäinen raketti oli Vector R:n prototyyppi, jonka tarkoituksena ei ollut nousta vielä kiertoradalle, vaan osoittaa vain tekniikan toimivan lentämällä vain ylös ja alas (vähän kuin Pohjois-Korean ohjukset)..

Laukaisu tänään tehtiin Georgiasta, Yhdysvalloista, mutta varsinaisiksi laukaisupaikoiksi suunnitellaan Cape Canaveralia Floridassa ja Kodiakin rakettikeskusta Alaskassa. Kodiakista on tähän saakka laukaistu lähinnä pieniä luotausraketteja, mutta paikka olisi erinomainen maapallon napojen kautta kulkevien satelliittien lähettämiseen.

* Juttua on päivitetty 4.8. aamulla: kyseessä oli jo toinen raketin lento, ei  ensilento. Oletimme, että edellinen laukaisu toukokuun 3. päivänä oli vain paljon vaatimattomampi testi, mutta sekin oli jo "kunnollinen" koelento. Kummallakin kerralla yhtiö käytti jo Vector R -raketin prototyyppiversiota.

Cassinin syöksy kuolemaan on alkanut

To, 08/03/2017 - 15:17 Jari Mäkinen
Lennonjohtajia lennonjohdossa

Nyt se on menoa: Cassini ohjattiin 15. heinäkuuta radalle, jolla se tulee syöksymään Saturnukseen 15. syyskuuta. Kaliforniassa, Pasadenassa oleva lennonjohto käskytti luotainveteraanin käyttämään moottoriaan siten, että edessä oli varma tuho.

Cassini-lennon projektipäällikkö Earl Maize (vasemmalla) ja lennon operaatiojohtaja Julie Webster olivat itse konsoleiden ääressä Jet Propulsion Laboratoryssä heinäkuun 15. päivänä, kun luotaimelle lähetettiin viimeisen ratamuutoksen tekevä käskysarja.

Luotain ohjattiin radalle, jolla se tekee vielä kymmenen kierrosta Saturnuksen ympärillä, koko ajan tullen lähemmäksi sen pilvikerrosta. Viiden viimeisen kierroksen aikana luotain viiltää jo kaasukehän yläosien läpi niin, että ratanopeus hidastuu sen verran, että lopulta luotain sukeltaa Saturnukseen.

Tämä on tieteellisesti erittäin kiinnostava tapa sanoa jäähyväiset, sillä kierros kierrokselta saadaan yhä tarkempia ja jännempiä havaintoja niin kaasukehästä ja sen pilvistä kuin myös renkaista. 

Jos jotain yllättävää ilmenee, niin uusia ratamuutoksia voidaan vielä tehdä – mutta todennäköisesti tämä oli sitten tässä.

Cassini on käyttänyt lähes 20 vuotta kestäneen avaruusmatkansa aikana päämoottoreitaan 360 kertaa. Tärkein näistä oli heinäkuun ensimmäisenä 2004 tapahtunut poltto, jolla luotain asettui kiertämään Saturnusta pitkän planeettainvälisen lentonsa päätteeksi.

Sen jälkeen moottoreilla on tehty ratamuutoksia, jotka ovat vieneet Cassinin tutkimaan Saturnusta ja sen renkaita eri puolilta sekä tekemään kuiden ohilentoja. 

Lennon alussa moottoreita suunniteltiin käytettäväksi enemmänkin, jopa 492 kertaa, mutta siihen ei ole ollut tarvetta. Luotaimen rataa on onnistuttu pitämään haluttuna erittäin tarkasti, mikä osaltaan on tehnyt mahdolliseksi sen, että luotain on ollut toiminnassa Saturnuksen kiertoradalla suunnitellun neljän vuoden sijaan yli 13 vuotta.

Cassini syöksyy Saturnuksen kaasukehään

Jos kaikki sujuu laskelmien mukaan, alkaa Cassinin surmansyöksy 15.9. klo 13.44 Suomen aikaa.

Saturnuksen kaasukehä alkaa silloin vaikuttaa luotaimeen ja mitä alemmas luotain vajoaa, sitä voimakkaammin kaasu hidastaa vauhtia, lämmittää luotaimen pintaa ja koettaa kääntää sitä pois asennostaan. 

Cassini pitää monia tutkimuslaitteitaan päällä koko ajan ja asennonsäätöjärjestelmä pyrkii suuntaamaan lautasantennin kohti Maata mahdollisimman pitkän. Luotain lähettää tietojaan viimeiseen saakka; arvioiden mukaan viimeinen signaali Cassinista kuullaan Maassa klo 17.08 Suomen aikaa.

Se, että toimiva luotain ajetaan tietoisesti kamikazesyöksyyn, vaikuttaa hieman omituiselta – mutta se ei ole.

Vaikka Cassini toimii hyvin, on se jo ikääntynyt ja käyttää monia varajärjestelmiä. Se saattaa rikkoontua lopullisesti koska tahansa. Kannattaa muistaa, että luotain on suunniteltu 1980-luvulla ja rakennettu 1990-luvulla.

Hallitulla syöksyllä halutaan varmistaa se, ettei luotain jää kiertämään holtittomasti Saturnusta ja osu vahingossakaan johonkin sen kiinnostavista kuista. Kuista kun on löydetty monia elämän rakennusaineita ja on mahdollista, että jossain niistä olisi tosiaan alkeellista elämää.

Ei olisi kiva, jos rampa Cassini syöksyisi tuon elämän sekaan.

Kaikella on lisäksi oma aikansa: nyt on hyvä hetki alkaa jo suunnitella uutta lentoa Saturnukseen – sellaista, joka voisi mennä uuden tekniikan avulla tutkimaan tuota mahdollista elämää paremmin ja tarkemmin kuin Cassini.

CERN nähtynä nelikopterin kyydistä

Euroopan hiukkastutkimuskeskus CERN sijaitsee Genevessä, Sveitsissä – ja itse asiassa myös vähän Ranskan puolella.

Sen alueella on paljon jänniä paikkoja, joihin tämä video antaa aivan uuden näkökulman: CERNissä on oma nelikopterikuvaaja Mike Struik, joka pyysi mukaansa tätä videota tekemään kilpatason nelikopteripilotin Chad Nowakin, videokuvaaja Christoph Madsenin ja valokuvaaja Maximilien Bricen.

Tuloksena on huima ja taatusti erilainen tutustumiskäynti maailman hiukkasfysiikkapyhätössä!

Avainsanat